ПРИМЕРНАЯ ДОПОЛНИТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

«Занимательная робототехника»

Направленность: техническая Уровень реализации программы: базовый Возраст: 7-11 лет

Срок реализации: 1 год (72 часа)

Автор составитель:

Москва 2019г.

РЕЦЕНЗИЯ

на примерную дополнительную общеразвивающую программу «Занимательная робототехника»

для обучающихся 7-11 лет.

Представленная на рецензию примерная дополнительная общеразвивающая программа актуальна и ориентирована на формирование современных компетенций в области информационных технологий, конструкторских навыков и опыта программирования.

Основными целями примерной программы являются овладение навыками начального технического конструирования, развитие мелкой моторики, координации, изучение понятий конструкции и ее основных свойств (жесткости, прочности и устойчивости), развитие навыков взаимодействия в группе.

В рецензируемой примерной программе присутствуют: пояснительная записка, описание образовательной новизны программы, формы организации учебных занятий, планируемые результаты обучения, тематическое планирование, описание содержания тем и разделов курса, формы аттестации и оценочные материалы, организационно — педагогические условия реализации программы, перечень информационных ресурсов.

Описанные в примерной программе методические подходы, выбранное предметное содержание и материально-техническое оснащение соответствуют заявленным в программе целям и задачам, а также возрастным особенностям обучающихся.

Таким образом, рецензируемая примерная дополнительная общеразвивающая программа «Занимательная робототехника» соответствует требованиям, предъявляемым к документам данного типа.

Репензент

тірорскігор по образовательной деятельности Епенева Юлия Якселевна

Оглавление

1.	Пояснительная записка	4
2.	Новизна образовательной программы	5
3.	Общая характеристика курса «Занимательная робототехника»	6
3.1.	Основные разделы программы	6
3.2.	Формы организации учебных занятий	8
4.	Ожидаемые результаты и способы определения их результативности	. 10
5.	Учебно-тематический план	. 11
6.	Содержание программы	. 12
7.	Формы аттестации и оценочные материалы	. 14
8.	Организационно – педагогические условия реализации программы	. 16
9.	Список питературы	. 17

1. Пояснительная записка

Направленность программы – техническая.

Уровень программы – базовый.

Возраст обучающихся: от 7 лет до 11 лет.

Срок реализации программы: 1 год, 72 часа.

Актуальность программы определяется тем, что материал по курсу «Занимательная робототехника» строится так, что используются знания учащихся из множества учебных дисциплин. Межпредметные занятия опираются на естественный интерес к разработке и постройке различных механизмов. Разнообразие конструкторов LEGO позволяет заниматься с учащимися по разным направлениям (конструирование, программирование, моделирование физических процессов и явлений). Знакомство школьников с моделированием способствует развитию их аналитических способностей и личных качеств. Особое внимание уделяется развитию логического и пространственного мышления. Ученики учатся работать с предложенными инструкциями, формируются умения сотрудничать с партнером, работать в коллективе.

На занятиях предполагается использование образовательных конструкторов LEGO WeDo. Данный конструктор в линейке роботов LEGO, предназначен в первую очередь для детей 6-11 лет. Работа с конструкторами позволяет детям в форме познавательной игры узнать многие важные идеи и развить необходимые в дальнейшей жизни навыки. При построении модели затрагивается множество проблем из разных областей знания – что является вполне естественным.

В основу курса «Занимательная робототехника» заложены принципы практической направленности.

Курс «Занимательная робототехника» рассчитан на 72 учебных часа и предназначен для учеников начального общего образования.

2. Новизна образовательной программы

Новизна заключается в том, что программа полностью построена с упором на практику, т. е. сборку моделей на каждом занятии. Конструирование как учебный предмет является комплексным и интегративным, он предполагает реальные взаимосвязи практически со всеми предметами начальной школы.

Тематический подход объединяет в одно целое задания из разных областей. Работая над моделью, ученики не только пользуются знаниями, полученными на уроках математики, окружающего мира, изобразительного искусства, но и углубляют их:

Математика — понятие пространства, изображение объемных фигур, выполнение расчетов и построение моделей, построение форм с учётом основ геометрии, работа с геометрическими фигурами.

Окружающий мир - изучение построек, природных сообществ, рассмотрение и анализ природных форм и конструкций, изучение природы как источника сырья.

Родной язык – развитие устной речи в процессе анализа заданий и обсуждения результатов практической деятельности (построение плана действий, построение логически связных высказываний в рассуждениях, обоснованиях, формулировании выводов).

Изобразительное искусство - использование художественных средств, моделирование с учетом художественных правил.

Педагогическая целесообразность программы состоит в том, что её реализация позволяет повысить эффективность познавательного процесса обучающихся. Программа является целостной и непрерывной в течение всего процесса обучения, и позволяет школьнику шаг за шагом раскрывать в себе творческие возможности. Изучая простые механизмы, ребята учатся работать руками (развитие мелких и точных движений), развивают элементарное конструкторское мышление, фантазию, изучают принципы работы многих механизмов.

Цель: овладение навыками начального технического конструирования, развитие мелкой моторики, координации, изучение понятий конструкции и ее основных свойств (жесткости, прочности и устойчивости), развитие навыков взаимодействия в группе.

Задачи:

- Развитие коммуникативной компетентности младших школьников на основе организации совместной продуктивной деятельности (умения работать над проектом в команде, эффективно распределять обязанности, развитие навыков межличностного общения и коллективного творчества)
- Развитие индивидуальных способностей ребенка;
- Развитие умения творчески подходить к решению задачи;
- Развитие умения довести решение задачи до работающей модели;
- Развитие умения излагать мысли в четкой логической последовательности,
 отстаивать свою точку зрения, анализировать ситуацию и самостоятельно
 находить ответы на вопросы путем логических рассуждений.
- Развитие умения работать по предложенным инструкциям;
- Повышение интереса к учебным предметам посредством конструктора.

Отличительные особенности программы: Программа может быть скорректирована в зависимости от возраста учащихся. Некоторые темы взаимосвязаны со школьным курсом и могут с одной стороны служить пропедевтикой, с другой стороны опираться на него.

3. Общая характеристика курса «Занимательная робототехника»

3.1. Основные разделы программы

Раздел 1. Введение в робототехнику

Развитие науки робототехника в современном мире. Понятие «робот». Поколения роботов. Классификация роботов. Кибернетическая система. Обратная и прямая связь. Датчики. Конструирование, моделирование и компьютерное управление в робототехнике. Использование компьютеров совместно с

конструкторами. Датчики, сервоприводы, двигатели. Принципы составления программ управления.

Раздел 2. Конструирование роботов

Зубчатая, ременная и фрикционные передачи. Дифференциал. Кривошипношатунный механизм. Рычаг. Клин. Передаточные отношения. Основы и особенности конструирования роботов. Алгоритмы моделирования роботов. Стандартные модели и механизмы. Модель. Система. Детали механизмов и машин. Электропривод. Прочность. Аналоговые и цифровые датчики. Техническое задание и технический рисунок, конструкторская документация.

Раздел 3. Решение прикладных задач

Структура и синтаксис языка программирования: лексемы, операции, выражения, операторы, функции, комментарии. Правила написания программ. Команды действия, команды ожидания. Циклы. Ветвления. Параллельные программы. Типы управления робототехническими системами:

- биотехнический командный (кнопочное и рычажное управление отдельными звеньями робота);
- автоматический программный (функционирование по заранее заданной программе, предназначение для решения однообразных задач в неизменных условиях окружения);
- интерактивный автоматизированный (возможно чередование автоматических и биотехнических режимов).

Раздел 4. Выполнение индивидуальной или совместной работы.

Каждый ученик или группа из двух - трех учащихся должны выполнить проект на заданную тему (или по выбору учащихся), в ходе работы над которым демонстрируется вся сумма знаний и практических навыков, полученных в ходе обучения.

Проектная работа разбивается на следующие этапы:

- проект на бумаге (полное описание техническое задание на проект).
- компьютерная реализация проекта; выполняется учениками на нескольких занятиях; педагог контролирует процесс выполнения работы, отвечает на возникающие вопросы, консультирует.

Защита проектов. Зачётное занятие: защита индивидуальной или совместной работы. Выполненная работа демонстрируется всей группе; автор (группа авторов) представляет проект, группа обсуждает представленный проект, автор (авторы) отвечает на вопросы.

3.2. Формы организации учебных занятий

Форма и режим занятий: Занятия проводятся 1 раз в неделю по 2 часа в групповой форме, включают в себя 45 минут учебного времени и 15 мин перерыв.

Каждый раздел охватывает отдельную информационную технологию или её часть. Внутри раздела разбивка по времени изучения производится учителем самостоятельно, но с учётом рекомендованного учебно-тематического плана.

Закрепление знаний проводится с помощью практики отработки умений самостоятельно решать поставленные задачи, соответствующих минимальному уровню планируемых результатов обучения.

Задания выполняются с использованием робототехнического конструктора. При этом ученики не только формируют новые теоретические и практические знания, но и приобретают новые инженерно-технологические навыки.

Для самостоятельной работы используются разные по уровню сложности тренировочные упражнения, которые носят репродуктивный и творческий характер. Количество таких упражнений в работе может варьироваться.

В ходе обучения проводится промежуточное тестирование по темам для определения уровня знаний учащихся.

Выполнение тренировочных упражнений и тестирование способствует активизации учебно-познавательной деятельности и ведёт к закреплению знаний, а также служит индикатором успешности образовательного процесса.

Формы проведения занятий:

Разъяснение меоремического мамериала. Может проводиться в виде представления презентации или видеоурока, содержащего необходимый учебный материал. Презентация (видеоурок) может просматриваться совместно с помощью проектора или открываться как сетевой ресурс каждым учащимся на своем компьютере и просматриваться в удобном для него темпе (демонстрационный или

наглядный метод).

Практическое освоение нового материала. На каждом занятии тренировочные упражнения выполняются с использованием робототехнического конструктора и компьютера под контролем педагога.

Индивидуальная работа по закреплению пройденного материала. Индивидуальное задание выдается каждому учащемуся. (Возможен вариант работы в группах).

Индивидуальная работа с учащимися. Педагог дает индивидуальное задание повышенной сложности или помогает учащемуся поставить задачу и реализовать свой творческий замысел.

Тестирование. Выполняется с целью закрепления изученного материала.

Итоговая работа. Завершает изучение всего материала. Чтобы продемонстрировать всю сумму знаний и практических навыков, каждый ученик или группа из двух - трех учащихся должны выполнить проект на заданную тему или по выбору учащихся.

Формы и методы контроля:

- тестирование;
- выполнение тренировочных упражнений;
- выполнение итогового проекта

Характеристика учебного процесса:

- при изучении курса используются практические самостоятельные работы;
- курс обучения заканчивается выполнением и защитой индивидуальной или совместной итоговой работы.

4. Ожидаемые результаты и способы определения их результативности

Будут знать	Будут уметь	Форма подведения итогов		
Правила по технике безопасности.	Соблюдать правила техники безопасности на занятиях	По окончании курса учащиеся создают индивидуальный проект, включающий в себя все ранее изученные аспекты		
Порядок создания алгоритма программы действия робототехнических моделей.	Создавать программы для робототехнических моделей при помощи визуального конструктора WeDo.			
Элементную базу, при помощи которой собираются модели WeDo. Порядок взаимодействия механических узлов робота с электронными и оптическими	Проводить сборку робототехнических моделей с применением конструктора WeDo.	конструирования и управления моделями WeDo.		
устройствами. Компьютерную среду, включающую в себя графический язык программирования.	Проявлять творческую инициативу и самостоятельность, логическое, креативное проектное мышление, память, внимание при конструировании роботов			

Для **подведения итогов** реализации программы предусмотрена аттестация в форме выполнения и демонстрации индивидуального проекта.

5. Учебно-тематический план

	Название раздела, темы	Всего	В том числе		Форма
№			Теория	Практика	аттестации (контроля)
1	Раздел 1. Введение.	2	1	1	
1.1	Техника безопасности.	0,5	0,5	-	опрос
1.2	Знакомство с конструктором WeDo. Элементы набора.	1,5	0,5	1	Практическая работа
2	Раздел 2. Изучение механизмов.	4	1	3	
2.1	Зубчатые колёса. Зубчатая передача.	2	0,5	1,5	Практическая работа
2.2	Шкивы и ремни. Перекрёстная ременная передача. Червячная зубчатая передача.	2	0,5	1,5	Практическая работа
3	Раздел 3. Изучение датчиков и моторов.	2	1	1	Практическая работа
4	Раздел 4. Программирование WeDo.	4	2	2	Практическая работа
5	Конструирование и программирование заданных моделей	28	-	28	Практическая работа
6	Индивидуальная проектная деятельность	28	-	28	Практическая работа
7	Итоговое занятие	4	-	4	Демонстрация проекта
	Итого:	72	5	67	

6. Содержание программы

Раздел 1. Введение.

<u>Тема 1. 1 Общая информация. Правила по технике безопасности при работе с</u> оборудованием в классе.

Теория (0,5 ч.) Знакомство с учащимися. Уточнение расписания и режима занятий. Правила поведения и правила по технике безопасности на занятиях. История развития робототехники. Применение роботов в различных сферах жизни человека, значение робототехники. Введение понятия «робот». Поколения роботов. Классификация роботов.

Тема 1.2. Знакомство с робототехническим конструктором.

Теория (0,5 ч.) Ознакомление с комплектом деталей для изучения робототехники. Элементы и правила сборки. Инструкция.

Практика (1 ч.) Сборка робота по инструкции.

Форма контроля по темам Раздела 1: опрос.

Форма контроля подразумевает опрос учащихся по вопросам техники безопасности.

Раздел 2. Изучение механизмов.

Тема 2.1. Зубчатые колёса. Зубчатая передача.

Теория (2 ч.) Различные виды зубчатых колес. Зубчатая передача. Передаточное число.

Практика (4 ч.) Сборка модели для тренировочных упражнений. Отладка и запуск модели.

<u>Тема 2.2.</u> <u>Шкивы и ремни. Перекрёстная ременная передача. Червячная зубчатая передача.</u>

Теория (2 ч.) Шкивы и ремни. Применение ременной и червячной передач.

Практика (8 ч.) Практика сборки модели с применением полученных знаний о механике.

Форма контроля по темам раздела 2: практическая работа.

Форма контроля по разделу представляет собой демонстрацию работоспособной модели согласно тренировочным упражнениям.

Раздел 3. Изучение датчиков и моторов.

Теория (6 ч.) Мотор и оси. Датчик наклона, расстояния.

Практика (12 ч.) Практика сборки модели с применением полученных знаний о датчиках и моторах.

Форма контроля по темам раздела 3: практическая работа.

Форма контроля представляет собой демонстрацию работоспособной управляемой модели робота согласно тренировочным упражнениям.

Раздел 4. Программирование WeDo.

Теория (4 ч.) Блок «Цикл». Блок «Вычесть из экрана».

Практика (12 ч.) Разработка управляемого робота для тренировочных упражнений. Набор, отладка и запуск программы для управляемого робота.

Форма контроля по теме раздела 4: практическая работа.

Форма контроля представляет собой демонстрацию работоспособности управляемого робота согласно тренировочным упражнениям.

Раздел 5. Конструирование и программирование заданных моделей.

Практика (5 ч.) Сборка моделей: танцующая птица, умная вертушка, обезьянка — барабанщица, голодный аллигатор, рычащий лев, порхающая птица, нападающий футбольной команды, вратарь, ликующие болельщики, спасение самолёта, спасение от великана, непотопляемый парусник, космические корабли, жители других планет.

Форма контроля по теме раздела 5: практическая работа.

Форма контроля представляет собой демонстрацию работоспособных управляемых моделей согласно тренировочным упражнениям.

Раздел 6. Выполнение индивидуального итогового проекта.

Практика (5 ч.) Разработка, сборка и программирование своих моделей. Самостоятельная практическая работа над созданием итогового проекта.

Раздел 7. Итоговое занятие.

Практика (4 ч.) Демонстрация учащимися выполненных итоговых проектов. Обсуждение и оценивание итоговых проектов.

7. Формы аттестации и оценочные материалы

Качество освоения программы осуществляется по оценке разработанных и созданных им устройств (роботов, электронных схем, деталей машин и т.д.) как по инструкции, так и самостоятельно и проектированию занятий на их основе.

В процессе реализации программы и для отслеживания успехов обучающихся педагог использует в течение занятий следующие формы контроля:

- экспресс-опросы учащихся в форме «вопрос-ответ», тестирование;
- выполнение тренировочных упражнений;
- по окончании курса выполнение итогового проекта.

Защита итогового проекта проходит в форме представления обучающимся технического задания на проект, работающего кода, ответов на вопросы преподавателя. Обсуждения с учащимися достоинств и недостатков проекта.

Критерии оценивания итогового проекта:

- самостоятельность выполнения;
- законченность работы;
- соответствие выбранной тематике;
- умение проявлять творческую инициативу и самостоятельность, логическое, креативное проектное мышление, память, внимание при конструировании роботов;
- использование при работе над проектом основных аспектов робототехники,
 изученных в ходе обучения.

При желании обучающиеся могут принять участие в конференция, конкурсах, выставках по робототехнике.

Примеры тренировочных упражнений.

- 1. Создать управляемого робота, перемещающегося по лабиринту, который находит клетку, раннее заданную экспертом, останавливается в ней и сообщает об этом звуковым сигналом.
- 2. Создать управляемого робота, считывающий двоичную информацию по штрих-коду, переводит в десятичную форму и выводит результат на экран.

- 3. Создать управляемого робота-манипулятора, который сортирует груз по цвету.
- 4. Создать управляемого робота, живущего внутри круга, за пределы которого нельзя выходить.

Примерные темы для итоговых работ.

- 1. Создать управляемого робота, двигающегося по линии, с подсчетом перекрестков.
- 2. Создать управляемого робота, который может осуществить параллельную парковку.
 - 3. Создать управляемого робота «Ванька-Встанька», который стабилизируется в положении равновесия, если работ наклоняется вперед, показания на датчике освещенности повышаются за счет отраженного света. В ответ на это вырабатывается управляющее воздействие, заставляющее робота ехать вперед и тем самым снова принимать вертикальное положение. При отклонении назад показания датчика понижаются и робот начинает движение назад.

8. Организационно – педагогические условия реализации программы

Материально-техническое обеспечение.

Занятия проходят в хорошо проветриваемом и освещённом классе, оборудованном мебелью, соответствующей санитарно-техническим требованиям и нормам возрастной физиологии (*парты, стулья, учительский стол и стул*).

Класс с рабочими местами учащихся и преподавателя, которые оборудованы компьютерами не менее 2 ГБ ОЗУ, процессор с тактовой частотой не менее 1.2 ГГц, диагональ мониторов не менее 12 дюймов, свободные 50 ГБ на накопителях, интернет не медленнее 1 Мбит/с.

Программное обеспечение.

- OC Windows/Linux/MacOS на усмотрение преподавателя.
- Любой современный браузер (например, Яндекс.Браузер, Google Chrome, Mozilla Firefox, Safari).
 - Визуальная среда программирования под робототехнический конструктор.

Оборудование:

Комплект на учебный класс робототехнических конструкторов на усмотрение преподавателя. (LEGO Mindstorms EV3, VEX Robotics, TRIK, Makeblock, Амперка)

Инструменты и расходные материалы.

Канцелярские принадлежности, бумага, картриджи, и др.

9. Список литературы

- 1. Вильяме Д. Программируемый робот, управляемый с КПК /Д. Вильяме; пер. с англ. А. Ю. Карцева. М.: НТ Пресс, 2006. 224 с; ил. (Робот своими руками).
- 2. Журнал «Компьютерные инструменты в школе», подборка статей по теме «Основы робототехники на базе конструктора Lego».
- 3. Карпов В.Э. «Мобильные мини роботы» Часть I Знакомство с автоматикой и электроникой. М: 2009.
- 4. Копосов Д.Г. Первый шаг в робототехнику: практикум для 5-6 классов. М.: БИНОМ. Лаборатория знаний, 2012.
 - 5. Робототехника для детей и родителей. С.А.Филиппов. СПб: Наука, 2010.
- 6. Скотт Питер. Промышленные роботы переворот в производстве. М.: Экономика, 2007.
 - 7. Фу К., Гансалес Ф., Лик К. Робототехника: Перевод с англ. М. Мир, 2010.
 - 8. Филиппов С. А. Робототехника для детей и родителей. СПб: Наука, 2011.
- 9. Юревич Ю.Е. Основы робототехники. Учебное пособие. СПб: БВХ-Петербург, 2005.

Литература, рекомендованная учащимся

- 1. Филиппов С. А. Робототехника для детей и родителей. СПб: Наука, 2011.
- 2. Копосов, Д. Г. «Первый шаг в робототехнику. Рабочая тетрадь для 5-6 классов».

Ресурсы в Интернете

1. Андре П., Кофман Ж.-М., Лот Ф., Тайар Ж. П. Перевод с французского Далечиной Д. М., Фанченко М. С., кандидата технических наук Чебуркова В. И. под редакцией доктора технических наук Долгова А. М.-Москва, Мир, 1986. [Электронный ресурс] — Режим доступа: http://экономикаизобилия.pd/ техническая-библиотека/конструирование-роботов, свободный.

- 2. Навыки для решения задач будущего [Электронный ресурс] Режим доступа: https://education.lego.com/ru-ru/middle-school/intro, свободный.
- 3. Робототехника: с чего начать изучение, где заниматься и каковы перспективы. М.Савина [Электронный ресурс] Режим доступа: https://www.dgl.ru/articles/robototehnika-s-chego-nachat-izuchenie-gde-zanimatsya-i-kakovy-perspektivy_11654.html, свободный.
 - 4. Робототехника на VEX IQ. О.Горнов. Научно-популярный портал Занимательная робототехника [Электронный ресурс] Режим доступа: http://edurobots.ru/2017/06/vex-iq-1/, свободный.
 - 5. Занятие по робототехнике [Электронный ресурс] Режим доступа: http://robot-prz.blogspot.ru, свободный.
 - 6. Затраты энергии при различных видах деятельности [Электронный ресурс] Режим доступа: http://max- body.ru/raznoe/spravochnaja-informacija/472-zatraty-jenergii-pri-razlichnykh-vidakh.html, свободный.
 - 7. Инновационная школа. Сообщество по робототехнике [Электронный ресурс] Режим доступа: http://inoschool.ru, свободный.
 - 8. Конструирование робота "ROBOTEH". Механика в робототехнике [Электронный ресурс] Режим доступа: http://www.robolive.ru/mecanics/, свободный.