ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ И НАУКИ ГОРОДА МОСКВЫ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ГОРОДА МОСКВЫ ШКОЛА №

Принята на заседании	УТВЕРЖДАЮ
методического совета	Директор ГБОУ Школа №
от «» 20 г.	ОИФ
Протокол №	« » <u>20</u> г.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА «Основы радиационной химии»

«Основы радиационной химии»

НАПРАВЛЕННОСТЬ: ЕСТЕСТВЕННО-НАУЧНАЯ

Уровень программы: базовый Возраст обучающихся:14—16 лет Срок реализации:1 год

Составитель (разработчик): ФИО, педагог дополнительного образования

г. Москва 2020 год

СОДЕРЖАНИЕ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	3
УЧЕБНЫЙ (ТЕМАТИЧЕСКИЙ) ПЛАН	7
СОДЕРЖАНИЕ УЧЕБНОГО (ТЕМАТИЧЕСКОГО) ПЛАНА	7
ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ	[9
СПИСОК ЛИТЕРАТУРЫ	10

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Радиационная химия — наука, изучающая влияние на вещество ионизирующих излучений. Как новая наука она была выделена практически сразу после открытия рентгеновских лучей. Излучение в радиационной химии служит источником энергии для химических реакций. Радиационная химия, в отличие от радиохимии, не касается радионуклидов, а лишь использует их как один из источников излучения.

Дополнительная общеобразовательная общеразвивающая программа «Основы радиационной химии» (далее — Программа) естественно-научной направленности базового уровня способствует пониманию обучающимися факторов, влияющих на изменение материи. В целом это помогает развитию естественно-научного мировоззрения и более глубокому пониманию природных и технических процессов.

Актуальность Программы

Радиационная химия имеет множественные приложения в области здравоохранения, промышленности и сельского хозяйства. В большинстве случаев они не находят упоминания в школьных курсах предметной области «Естественные науки». Тем не менее понимание основных концепций данной науки и практических результатов, достигаемых в области данной науки, вполне возможно на уровне средней школы.

Данная Программа разработана для первого знакомства с данной наукой для обучающихся, желающих углубить свои знания по предмету, связанному с ядерной тематикой.

Новизна Программы заключается в том, что в ее основу положено знакомство обучающихся с особенностями влияния радиации на вещество. Эта область исследований имеет прямое отношение к естественным наукам, изучаемым в школьном курсе, а также лежит в основе некоторых областей современной технологии.

Реализация данной программы способствует лучшему пониманию обучающимися специфики межпредметной области радиационной химии, расширению кругозора обучающихся, помогает им в профориентации и получении базовых знаний для дальнейшей специализации.

Педагогическая целесообразность Программы заключается в том, что

она создает условия для формирования у обучающихся естественно-научной картины мира, позволяет научиться критическому осмыслению информации, дает базис для углубленного изучения радиационной химии и связанных с ней наук в высшей школе.

Цель Программы — познакомить обучающихся с основными эффектами, сопровождающими взаимодействие радиации с веществом; научить их анализировать возможные следствия воздействия радиации, позволить им, с одной стороны, осознавать риски, связанные с радиацией, с другой стороны, аргументированно избегать радиофобии.

Реализация поставленной цели предусматривает решение ряда задач.

Задачи Программы

Обучающие:

- заложить основы систематических знаний о радиационной химии как науке о воздействии радиации на вещество;
 - сформировать навыки чтения современной научной литературы;
- дать представление об истории развития науки о радиации и наиболее значимых достижениях в данной области;
- дать возможность бросить взгляд на одно из пересечений тематик, традиционно изучаемых в различных предметах предметной области «Естественные науки».

<u>Развивающие:</u>

- развить интерес к пониманию основ микромира, имеющих обширное применение в современной техносфере;
 - развить склонность к критическому анализу информации;
 - развить навыки воображения и абстрактного мышления;
 - расширить кругозор обучающихся;
 - способствовать профессиональной ориентации обучающихся.

Воспитательные:

- воспитать устойчивый профессиональный интерес к изучению микромира;
- воспитать высокие моральные качества: любовь к своей будущей профессии, верность долгу, чувство гуманизма и патриотизма;
- воспитать бережное отношение к собственному здоровью и здоровью окружающих.

Отличительная особенность данной Программы состоит в том, что в ее построении и реализации:

- развиваются межпредметные связи, заложенные в традиционной школьной программе;
- восполняется дефицит современной научной информации, описываются современные научные высокотехнологичные методы, упоминаемые в СМИ, но менее известные в рамках традиционной школьной программы;
 - развиваются познавательные компетенции обучающихся;
- поддерживается ориентация обучающихся на последующую специализацию в областях науки, связанных с ядерной тематикой.

Данная Программа разработана с учетом опыта кафедры радиохимии Химического факультета МГУ им. Ломоносова.

При реализации программы используется вычислительная техника, обеспечивающая доступ к учебной и научной литературе.

Категория обучающихся

Работа ведется в разновозрастных группах, группы комплектуются из обучающихся 14–16 лет.

Разнообразие содержания курса предполагает использование разных форм, методов и средств обучения.

Сроки реализации

Программа рассчитана на 1 год обучения. Общее количество часов в год составляет 34 часа.

Формы и режим занятий

Программа реализуется раз в 2 недели по 2 часа, 34 часа в год. Программа включает в себя лекционные и практические занятия: лекции, семинары, диспуты, круглые столы, викторины, просмотры видеофильмов, лабораторные занятия.

Планируемые результаты освоения Программы

По итогам реализации Программы обучающиеся будут знать:

- основные положения законов, теорий, закономерностей, правил, гипотез в области современной радиационной химии;
- биографические данные и основные достижения ведущих исследователей в области радиационной химии;

- основную терминологию, относящуюся к радиационной химии;
- свойства основных видов ионизирующих излучений, как встречающихся в природе, так и полученных искусственно;
 - основные представления об энергетике ионизирующих излучений;
 - химию взаимодействия ионизирующих излучений с веществом;
 - основные источники ионизирующих излучений;
 - основные методы изучения ионизирующих излучений;
- особенности применения ионизирующих излучений в современной науке и технике;
 - ключевые достижения в области радиационной химии.

По итогам реализации Программы обучающиеся будут уметь:

- пользоваться терминологией, относящейся к радиационной химии;
- различать виды ионизирующего излучения;
- предсказывать возможные следствия взаимодействия ионизирующего излучения с веществом;
- использовать расчеты дозы ионизирующего излучения для решения типовых задач;
 - проводить оценочный расчет энергии ионизирующего излучения;
- самостоятельно работать с источниками дополнительной литературы.

Формы контроля и оценочные материалы

Служат для определения результативности освоения Программы обучающимися. Аттестация проводится 2 раза в год: промежуточная – в январе по итогам 1 полугодия, итоговая – в мае.

Формы проведения аттестации:

- тестирование;
- решение расчетных задач;
- зачётная работа.

УЧЕБНЫЙ (ТЕМАТИЧЕСКИЙ) ПЛАН

No	Названия раздела/темы	Количество			Формы
		часов			аттестации и
		Bce	Teo	Пра	контроля
		ГО	рия	КТИ	
				ка	
1.	Понятие о радиационной химии	2	1	1	Первичная
	-				диагностика.
					Тестирование
2.	Виды излучения	8	6	2	Тестирование
3.	Измерение радиоактивности	4	3	1	Тестирование
4.	Законы взаимодействия	8	5	3	Тестирование.
	радиации с веществом				Решение
					расчетных задач
5.	Применение методов	8	6	2	Тестирование
	радиационной химии				
6.	Актуальные проблемы в	4	1	3	Итоговая
	области радиационной химии				аттестация.
					Зачетная работа
	Итого	34	22	12	

СОДЕРЖАНИЕ УЧЕБНОГО (ТЕМАТИЧЕСКОГО) ПЛАНА Раздел 1. Понятие о радиационной химии

Теория. Введение в Программу. Формы и методы деятельности. План работы на учебный год. Инструктаж по технике безопасности.

Практика. Первичная диагностика. Тестирование.

Раздел 2. Виды излучения

Тема 2.1. История открытия радиоактивности

Теория. Трубка Крукса и газовый разряд. Обнаружение В.К. Рентгеном X-лучей. Открытие радиации А. Беккерелем. Влияние излучения радия на химические вещества, открытое супругами Кюри. Естественная и искусственная радиоактивность. Радиоактивный распад и ионизирующие излучения.

Тема 2.2. Электромагнитное излучение

Теория. Рентгеновское излучение. Гамма-радиация. Источники рентгеновского излучения. Синхротронное излучение.

Тема 2.3. Излучение заряженных частиц

Теория. Альфа-излучение. Бета-излучение. Позитронное излучение. Протонная радиоактивность. Тяжелые ионы. Космические лучи. Излучение Черенкова-Вавилова. Ускорители заряженных частиц.

Тема 2.4. Излучение незаряженных частиц

Теория. Генераторы нейтронов. Нейтронная радиоактивность.

Практика. Тестирование.

Раздел 3. Измерение радиоактивности

Тема 3.1. Методы изучения радиации

Теория. Пузырьковая камера как исторически первая установка для изучения радиации. Влияние магнитного поля на ионизирующее излучение различных видов. Счетчик Гейгера. Радиометры. Спектрометры ионизирующего излучения.

Тема 3.2. Энергия ионизирующего излучения

Теория. Длина волны рентгеновского излучения и гамма-лучей. Энергия излучения. Электрон-вольт как единица измерения.

Практика. Тестирование.

Раздел 4. Законы взаимодействия радиации с веществом

Тема 4.1. Взаимодействие ионизирующего излучения со средой

Теория. Энергия излучения, переданная веществу. Сечение взаимодействия ионизирующих частиц. Потери энергии заряженных частиц. Ионизация и возбуждение атомов. Пробег заряженных частиц. Поглощение рентгеновского и гамма-излучения. Рассеяние рентгеновских лучей. Взаимодействие нейтронов с веществом. Дифракция нейтронов.

Тема 4.2. Понятие о дозе излучения

Теория. Радиационно-химический выход. Линейная передача энергии. Доза ионизирующего излучения. Калориметрический метод определения поглощенных доз. Химическая дозиметрия.

Практика. Решение расчетных задач.

Тема 4.3. Химия процессов в веществе, протекающих под действием ионизирующего излучения

Теория. Радиолиз химических соединений. Понятие о сольватированном электроне. Образование свободных радикалов под воздействием ионизирующего излучения. Кинетика реакций, протекающих по

радикальному механизму.

Практика. Тестирование.

Раздел 5. Применение методов радиационной химии

Тема 5.1. Радиационные эффекты в ядерной энергетике

Теория. Радиационное материаловедение. Проблема устойчивости материалов, используемых для построения ядерных реакторов, к радиации. Радиолиз воды, используемой в качестве теплоносителя. Радиационная коррозия.

Тема 5.2. Применение радиации в синтетической химии

Теория. Применение радиации в химии полимеров. Радиационное сшивание. Радиационное отверждение. Получение ядерных мембран

Тема 5.3. Радиационная стерилизация

Теория. Эффект радиационной стерилизации и его применение. Стерилизация одноразовых медицинских изделий. Стерилизация пищевых продуктов.

Практика. Тестирование.

Раздел 6. Актуальные проблемы в области радиационной химии

Теория. Место радиационной химии в системе естественных наук. Перспективы развития радиационной химии.

Практика. Итоговая аттестация. Зачетная работа.

ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ

Методическое обеспечение реализации Программы

При реализации Программы в учебном процессе используются методические пособия, дидактические материалы, фото- и видеоматериалы, журналы и книги, обзоры и оригинальные публикации, прочие материалы в Сети Интернет.

При проведении занятий используются:

- словесные методы обучения: лекции, объяснения, беседы, консультации;
- наглядные методы обучения: презентации, видеоматериалы, визуализация;
- исследовательские методы обучения выполнение обучающимися определенных исследовательских заданий.

Усвоение материала контролируется при помощи тестирования и выполнения практических заданий.

Заключительное занятие объединения проводится в форме зачетной работы.

Материально-технические условия реализации Программы

Продуктивность работы во многом зависит от качества материальнотехнического оснащения процесса. Программа реализуется в аудитории образовательной организации с применением технических средств обучения и лабораторного оборудования:

- компьютеры учителя и обучающихся;
- интерактивная доска;
- датчики радиоактивности.

СПИСОК ЛИТЕРАТУРЫ

Нормативная база:

- 1. Федеральный закон от 29 декабря 2012 г. N 273-ФЗ «Об образовании в Российской Федерации».
- 2. Федеральный государственный образовательный стандарт среднего общего образования.

Учебная и научно-популярная литература:

- 1. Бекман И. Н. Атомная и ядерная физика. Радиоактивность и ионизирующие излучения. Учебник для вузов. М.: Юрайт, 2020. 493 с.
- 2. Бугаенко Л.Т., Кузьмин М.Г., Полак Л.С. Химия высоких энергий. М.: Химия, 1988. 368 с.
- 3. Воронцова Н. И., Клыгина К. В., Делов М. И. Ядерная физика. 10-11 классы. /под. ред. Ю.А. Панибратцева и Г.В. Тихомирова. М.: Просвещение, 2019. 159 с.
- 4. Гольбрайх З. Е. Сборник задач и упражнений по химии: Учеб. пособие для хим.-технол. вузов. 4-е изд., перераб. и доп. М.: Высшая школа, 1984. 224 с.
- 5. Загорец П.А., Мышкин В.Е. Радиационная химия полимеров. Образование полимеров под действием ионизирующего излучения. М.: Изд. РХТУ им. Д.И. Менделеева, 1987. 72 с.
- 6. Иванов В. С. Радиационная химия полимеров. М.: Химия, 1988. 320 с.
- 7. Итоги III Химической образовательной программы. /под ред. А. Дроздова и В. Еремина. Сочи: Сириус, 2018. 72 с.
- 8. Кабакчи С. А., Булгакова Г. П. Радиационная химия в ядерном топливном цикле (учебное руководство). М.: Изд. РХТУ им. Д.И.

- Менделеева, 1997. 104 с.
- 9. Плюснин В. Ф. Радиационная химия. Учебное пособие. Новосибирск: Изд. НГУ, 2010 198 с.
- 10. Своллоу А. Радиационная химия органических соединений. М.: Атомиздат, 1976. 278 с.
- 11. Хенли Э., Джонсон Э. Радиационная химия. М.: Атомиздат, 1974. 416 с.

Интернет-источники

- 1. Калмыков С.Н. Радиохимия сегодня [Электронный ресурс] URL: http://www.chem.msu.su/rus//video-kalmikov/welcome.html (дата обращения 07.10.2020).
- 2. Группа экологической радиохимии. Кафедра радиохимии. [Электронный ресурс] URL: http://radiochemistry-msu.ru/o-kafedre/laboratorii/gruppa-ekologicheskoj-radiokhimii (дата обращения 07.10.2020).