

Методическое пособие для учителей, работающих в инженерных классах по дополнительной профессиональной программе

ФИЗИЧЕСКИЕ ОСНОВЫ ТЕХНИЧЕСКИХ СИСТЕМ И УСТРОЙСТВ

Часть 1. МЕХАНИКА

ВВЕДЕНИЕ

Подготовка современного инженера имеет особенность, связанную с необходимостью получения им знаний в области передовой фундаментальной науки, в основе которой лежит квантовая механика. Ведь если в 20-м веке решение основных технических проблем (за исключением, пожалуй, электроники) ограничивалось микротехнологиями, создание которых требовало знания классических законов физики и химии, то век 21-й — это век нанотехнологий, в основе которых — квантовая механика.

Вместе с тем, подавляющее число технических устройств по-прежнему имеют классическую научную основу. Изучение квантовой физики также требует хорошего знания «классики». Следовательно, основной упор предмета «Физика» в школе все-таки должен быть сделан на изучении механики Ньютона и электродинамики Максвелла. Поэтому данные разделы физики будут рассмотрены в представленном пособии в первую очередь. При этом основные положения будут изложены под прикладным углом зрения, будут приведены примеры инженерной реализации рассматриваемых физических явлений и описывающих эти явления законов и уравнений, для учащихся предложены небольшие проектные задания по созданию соответствующих технических устройств.

Пособие предназначено для учителей физики, работающих или собирающихся работать в инженерных классах средней школы, и составлено в рамках реализации дополнительной профессиональной программы «Физические основы технических систем и устройств». Состоит из двух частей. В первой части рассмотрены основные главы Механики, во второй — Электродинамики.

Каждая тема содержит примеры инженерной реализации изучаемых явлений и законов, их описывающих, а также примерные темы исследовательских проектов. Этому предшествует краткое теоретическое введение, которое, как правило, начинается с основных определений и формулировок. В этой части Пособие будет особенно полезно в случаях, когда прикладная, инженерная составляющая предмета изучается не на основном уроке физики, а на факультативном занятии или иных его формах.

По уровню изложения материал пособия ориентирован на серию Учебников для углубленного изучения физики под редакцией Г.Я. Мякишева.

Пособие имеет *IT*-приложение в виде представленного в среде Power-Point мультимедиа-конспекта, который может быть использован учителем при изложении теоретической части урока. Текст пособия фактически является комментарием к мультимедиа-конспекту.

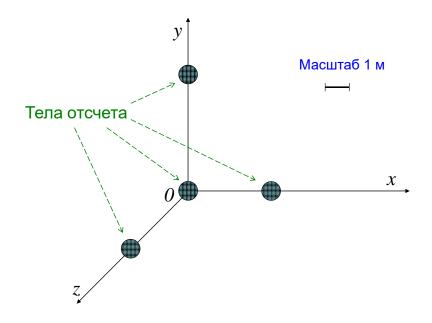
Анимационные слайды конспекта позволяют пошагово определёнными дозами выдавать материал лекции. Это, пожалуй, главная особенность и преимущество мультимедиа-конспекта. Навигационная система позволяет переходить и возвращаться в требуемые места конспекта. Анимационные эффекты дают возможность создавать внутри слайда модели физических явлений и процессов, акцентировать внимание учащегося на наиболее важных элементах решаемых вопросов, доказательств и результатов. При пошаговой выдаче на слайд деталей и фрагментов рисунков, схем, уравнений и формул не только не утрачивается эффект соучастия слушателей в процессе формирования блока учебного материала в его логической последовательности, но и дополнительно усиливается их внимание благодаря качественному изображению этих деталей, а также оригинальным возможностям программы PowerPoint.

Файлы *IT*-приложения записаны в формате «Демонстрация PowerPoint» и презентации открываются сразу в режиме показа слайдов. При демонстрации слайдов необходимо следовать инструкции, приведенной в Приложении.

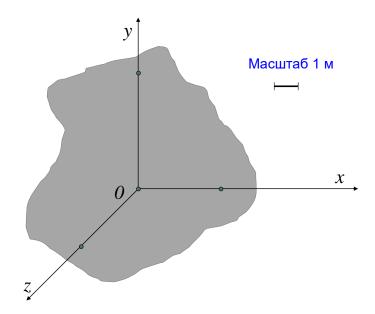
Тема 1. Инерциальные системы отсчета. Преобразования Галилея. Закон сложения скоростей

1.1. Основные определения

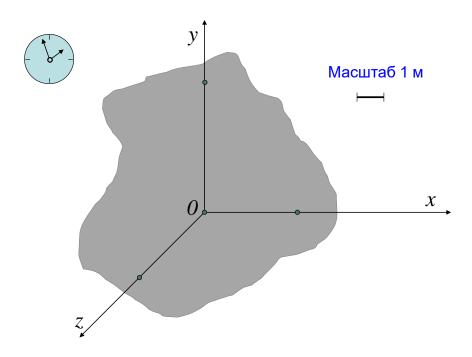
СИСТЕМА КООРДИНАТ



Систему координат можно «привязать» к разным точкам отсчета, принадлежащим одному телу:



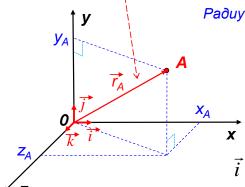
Система отсчета (СО): система координат + часы



Материальная точка -

тело, размерами которого в условиях данной задачи можно пренебречь.

Радиус-вектор материальной точки (МТ)



Радиус-вектор МТ связан с её координатами:

$$\vec{r}_A = \left\{ x_A, y_A, z_A \right\}$$

Введём единичные векторы координатных осей (орты):

$$\vec{i} = \{1,0,0\}; \ \vec{j} = \{0,1,0\}; \ \vec{k} = \{0,0,1\}$$

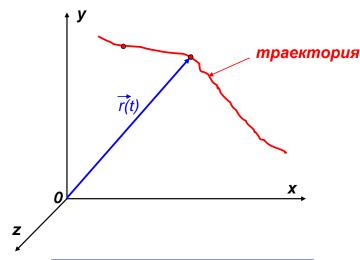
По определению, модули единичных векторов: $\left|\vec{i}\right| = \left|\vec{j}\right| = \left|\vec{k}\right| = 1$.

По правилу сложения векторов:
$$\vec{r}_{\!\scriptscriptstyle A} = x_{\!\scriptscriptstyle A} \vec{i} + y_{\!\scriptscriptstyle A} \vec{j} + z_{\!\scriptscriptstyle A} \vec{k}$$

Дважды применив теорему Пифагора, получим величину радиус-вектора МТ по модулю:

$$|\vec{r}_A| = \sqrt{x_A^2 + y_A^2 + z_A^2}$$

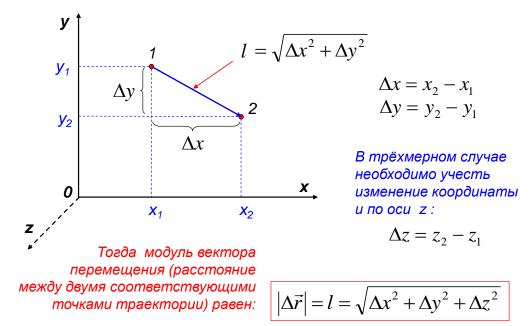
Закон движения МТ. Траектория



$$ec{r}=ec{r}(t)=ig\{x(t),\,y(t),z(t)ig\}$$
 — закон движения материальной точі

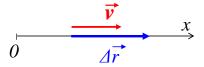
Расстояние между точками траектории – модуль вектора перемещения

Вначале рассмотрим случай, когда траектория лежит в плоскости экрана:



Скорость характеризует быстроту перемещения МТ по траектории, а также направление, в котором она движется в каждый момент времени.

При равномерным движении направление скорости и перемещения совпадают и лежат на траектории МТ:

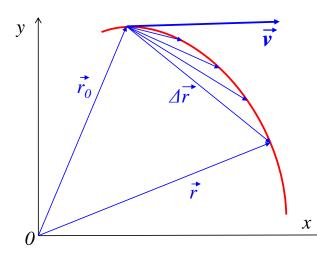


В этом случае вектор скорости определяется как перемещение в единицу времени:

$$\vec{v} = \frac{\Delta \vec{r}}{\Delta t},$$

и вычисляется путём деления пути $\, {f S} \,$ на время его преодоления $\, {f t} \, .$

Однако в общем случае (криволинейное и неравномерное движение) не только величина, но и направление вектора перемещения будет разным в зависимости от выбираемого промежутка времени.



Следовательно, записанное выше выражение для скорости будет здесь весьма приближённым:

$$\vec{v} \sim \frac{\Delta \vec{r}}{\Delta t}$$

Если время перемещения взять бесконечно малым:

$$\Delta t \rightarrow 0$$
,

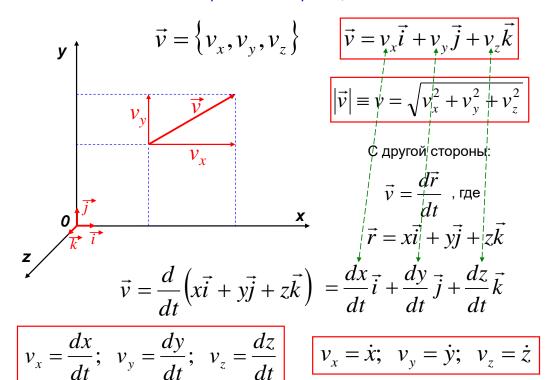
то перемещение фактически уляжется на траекторию, а скорость будет касательной к ней.

Таким образом, скорость в данной точке (или мгновенная скорость) определяется как предел отношения перемещения ко времени, стремящемуся к нулю, т.е. является производной радиус-вектора по времени:

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} \equiv \frac{d\vec{r}}{dt} \equiv \dot{\vec{r}}.$$

Скорость:
$$\vec{v} = \frac{d\vec{r}}{dt}$$

Скорость и её проекции:



<u>Ускорение</u>

Ускорение характеризует скорость изменения скорости и определяется производной скорости по времени:

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} \equiv \frac{d\vec{v}}{dt} \equiv \dot{\vec{v}}.$$

Скорость же определена выше как производная радиус-вектора по времени: $\vec{v} = \frac{d\vec{r}}{dt}$.

Т.е. ускорение может быть определено как вторая производная радиус-вектора по времени:

$$\vec{a} = \frac{d^2 \vec{r}}{dt^2} \equiv \ddot{\vec{r}}.$$

Ускорение: $\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}$

1.2. Преобразования Галилея и следствия из них

Закон инерции Галилея

Всякое тело находится в состоянии покоя или равномерного и прямолинейного движения, пока воздействие со стороны других тел не заставит его изменить это состояние.

Модель **свободной материальной точки**: воздействием на такую МТ со стороны других тел можно пренебречь.

Закон инерции Галилея (1-й закон Ньютона)

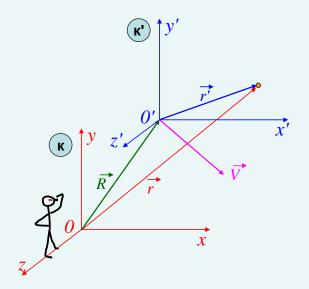
- Существуют СО в которых свободная МТ движется равномерно и прямолинейно или покоится.
- Такие СО называются инерциальными (ИСО).

Принцип относительности Галилея

- Никакие механические опыты, проведенные в пределах данной СО не позволяют определить, покоится она или движется прямолинейно и равномерно.
- Все ИСО равноправны.

Рассмотрим преобразования Галилея и следствия из них.

В общем случае:

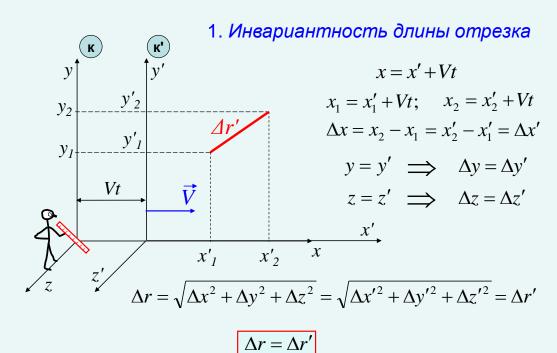


Скорость движущейся системы K':

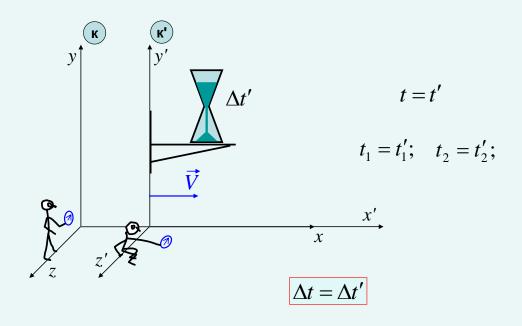
$$\vec{V} = \frac{d\vec{R}}{dt}$$

Радиус-вектор материальной точки относительно неподвижного наблюдателя (находящегося в системе *K*):

$$\vec{r} = \vec{r}' + \vec{R}$$



2. Инвариантность промежутка времени



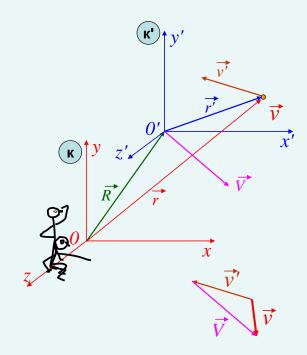
3. Закон сложения скоростей

$$x = x' + Vt \implies \dot{x} = \dot{x}' + V \equiv v_x = v_x' + V$$

$$y = y' \implies \dot{y} = \dot{y}' \equiv v_y = v_y'$$

$$z = z' \implies \dot{z} = \dot{z}' \equiv v_z = v_z'$$

$$t = t'$$



$$\vec{r} = \vec{r}' + \vec{R}$$

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{d\vec{r}'}{dt} + \frac{d\vec{R}}{dt}$$

$$\frac{0}{\vec{v}'} = \frac{\vec{v}}{\vec{v}}$$

Закон сложения скоростей:

$$\vec{v} = \vec{v}' + \vec{V}$$

4. Инвариантность ускорения

$$\vec{v} = \vec{v}' + \vec{V};$$
 $\vec{a} = \frac{d\vec{v}}{dt} = \frac{d\vec{v}'}{dt} + \frac{d\vec{V}}{dt}$

$$(m.\kappa. \vec{V} = const)$$

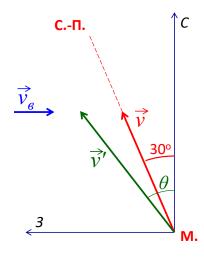
$$\vec{a} = \vec{a}' = inv$$

Т.е. законы Ньютона инвариантны относительно преобразований Галилея

1.3. Примеры инженерной реализации. Темы исследовательских проектов

В качестве **1-го примера инженерной реализации** рассмотрим одну из задач штурмана: определение курса самолёта при наличии ветра.

Пусть при полёте, допустим, из Москвы в Санкт-Петербург дует западный ветер, сносящий самолёт к востоку.



Пусть скорость самолёта относительно воздуха $v'=600\ \kappa M/q$, ветер западный и его скорость

$$v_e = 100 \ \kappa M/4$$
.

Определим курс самолёта (угол θ), который должен держать пилот, чтобы лететь из Москвы строго на Санкт-Петербург.

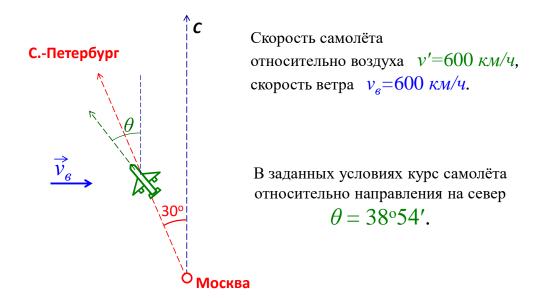
Скорость самолёта ν относительно Земли определяется законом сложения скоростей:

$$\vec{v} = \vec{v}' + \vec{v}_e$$

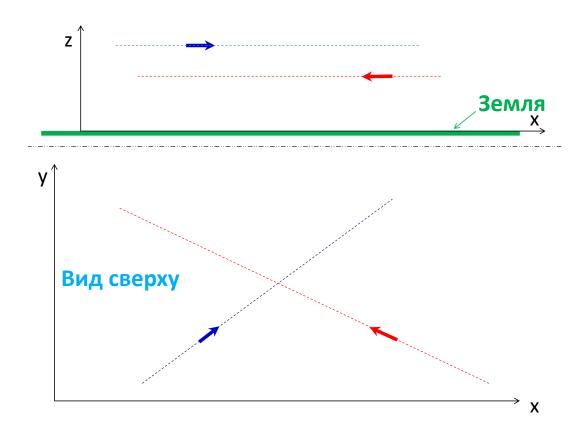
В проекциях на оси, соответствующие направлениям на запад и на север:

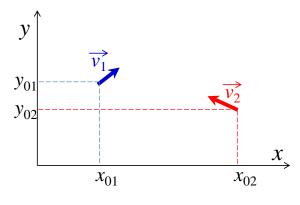
$$v\sin 30^\circ = v'\sin \theta - v_{_\theta};$$
 $v\cos 30^\circ = v'\cos \theta$
Откуда $tg\ 30^\circ = \frac{v'\sin \theta - v_{_\theta}}{v'\cos \theta};$

Выразив в уравнении $\cos\theta$ через $\sin\theta$, можно получить квадратное уравнение относительно $\sin\theta$, из которого и определяется курс самолета.



2-й пример инженерной реализации: метод определения минимального сближения самолётов, идущих на разных высотах перекрестными курсами.





Для решения задачи по определению минимального сближения необходимо знать начальные координаты самолётов $(x_{01}, y_{01}, x_{02}, y_{02})$, а также проекции их скоростей на оси координат: $v_{1x}, v_{1y}, v_{2x}, v_{2y}$.

Расстояние между самолётами

$$S = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2},$$
 (1)

$$\begin{array}{ll}
edde & x_1(t) = x_{01} + v_{1x}t; & x_2(t) = x_{02} + v_{2x}t; \\
y_1(t) = y_{01} + v_{1y}t; & y_2(t) = y_{02} + v_{2y}t; \\
z_1 = const; & z_2 = const
\end{array} (2)$$

Условие для минимума расстояния:
$$\frac{dS}{dt} = 0$$
,

откуда c учетом (1) u (2) получаем:

$$2[(x_{02} - x_{01}) + (v_{2x} - v_{1x})t](v_{2x} - v_{1x}) +$$

$$+ 2[(y_{02} - y_{01}) + (v_{2y} - v_{1y})t](v_{2y} - v_{1y}) = 0.$$

Тогда время минимального сближения:

$$t^{\min} = \frac{(x_{01} - x_{02})(v_{2x} - v_{1x}) + (y_{01} - y_{02})(v_{2y} - v_{1y})}{(v_{2x} - v_{1x})^2 + (v_{2y} - v_{1y})^2},$$

подставляя которое в уравнение (1), можно определить минимальное расстояние между самолетами.

В развитие первого примера в качестве проектных заданий ученикам могут быть предложены, например, такие темы:

- определение курса самолёта при произвольном направлении ветра;
- графическое построение траектории полёта самолёта, если пилот держит курс строго на радиомаяк, находящийся в пункте назначения;
 - составление программы автоматического построения траектории;
 - аналитическое определение траектории в этих условиях...

Проектными заданиями в развитие второго примера могут быть:

- получение окончательного решения задачи по определению минимального сближения;
- составление алгоритма и программы работы вычислителя минимального расстояния. Такое устройство полезно как на борту самолёта, так и у диспетчера на Земле.

Тема 2. Силы в природе. Упругая сила. Деформация тел. Закон Гука. Силы трения. Движение в вязкой среде

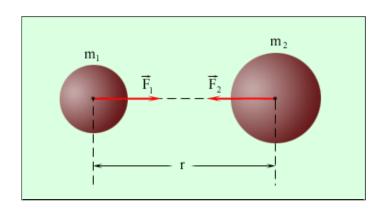
2.1. Фундаментальные и нефундаментальные взаимодействия. Классификация фундаментальных взаимодействий

Фундаментальные взаимодействия

(Не сводятся к каким-либо другим типам взаимодействий)

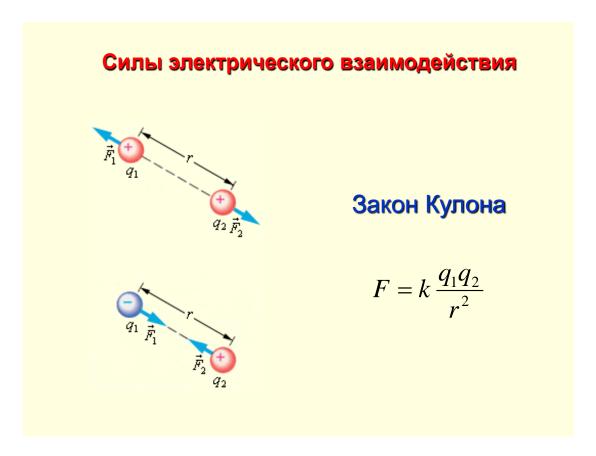
Взаимодействие	Границы	Относительная интенсивность взаимодействия
Сильное (ядерное)	Менее 10 ⁻¹⁵ м	1
Электромагнитное	От 0 до бесконечности	10-2
Слабое	Менее 10 ⁻¹⁵ м	10-13
Гравитационное	От 0 до бесконечности	10-38

Гравитационная сила притяжения между телами



$$F = G \frac{m_1 m_2}{r^2}$$

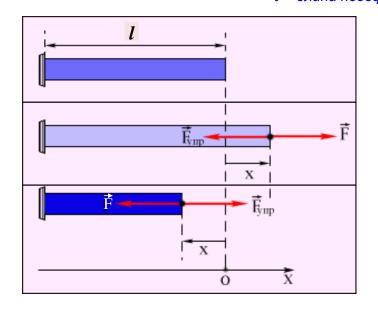
- закон всемирного тяготения



2.2. Примеры нефундаментальных сил. Упругая сила. Закон Гука

Деформация растяжения и сжатия. Упругая сила

l – длина недеформированного стержня



F – сила внешнего воздействия

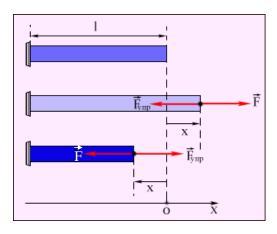
 $\boldsymbol{\mathcal{X}}$ – величина деформации

Закон Гука:

$$F_{ynp} = -kx$$

k – коэффициент упругости.

Знак минус означает, что упругая сила направлена в сторону, противоположную деформации.



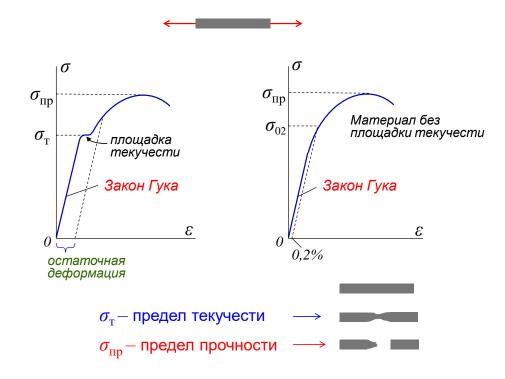
$$[E] = [\sigma] = \frac{H}{M^{2}} = \Pi a$$

$$k = E \frac{S}{I}.$$

Т.е. коэффициент упругости определяется материалом стержня и его геометрическими параметрами.

2.3. Предельные напряжения. Предел текучести. Предел прочности

Диаграмма деформирования при растяжении

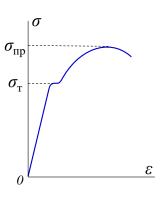


2.4. Запас прочности. Условие прочностной надёжности

Запас прочности
$$n = \frac{[\sigma]}{\sigma_{
m max}}$$

 $[\sigma]$ - предельно-допустимое напряжение

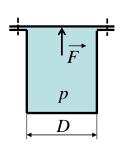
$$[\sigma] = \sigma_{_{
m T}}$$
 , $\sigma_{{
m \pi}{
m p}}$,... (в зависимости от инженерной задачи)



Условие **прочностной надёжности**: $n \ge [n]$, где [n] - допустимое значение запаса прочности.

При постоянных во времени нагрузках принимают [n] = 1,3-2,при переменных нагрузках случайного характера [n] = 3 - 5.

2.5. Пример инженерного применения закона Гука



Задача: определить количество **N** и диаметр **d** болтов крепления крышки цилиндрического сосуда, в котором находится газ под давлением p. Диаметр сосуда — D. P P D $F = p \frac{\pi D^2}{4}$, которая распределяется по всем N болтам и создаёт в них напряжение $\sigma = \frac{F}{N \cdot s}$, где $s = \frac{\pi d^2}{4}$ — площадь сечения болта. болтов крепления крышки цилиндрического

$$\sigma = \frac{F}{N \cdot s}$$
, где $s = \frac{\pi d^2}{4}$ – площадь сечения болта.

Т.е. напряжение $\sigma = \frac{pD^2}{N \cdot d^2}$, и оно не должно превышать предела прочности

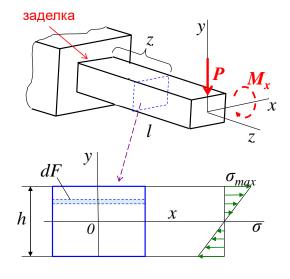
материала болтов на растяжение с учетом запаса прочности: $\sigma \leq \frac{[\sigma]}{[n]}$.

Из двух последних соотношений можно найти произведение $N \cdot d^2 \leq \frac{pD^2[n]}{\lceil \sigma \rceil}.$

Тогда, исходя из конструктивных особенностей и ограничений (например, по диаметру крышки), можно определить оптимальное значение диаметра болтов и их количество.

2.6. Пример расчета прочности: изгиб стержней

Пусть горизонтальный стержень прямоугольного сечения испытывает сосредоточенную вертикальную нагрузку на конце консоли.



Нормальные напряжения

в сечении **z**:

$$\sigma = y \frac{M_x}{I_x}$$

Вращающий момент:

$$M_x = P(l-z)$$

Момент инерции поперечного сечения:

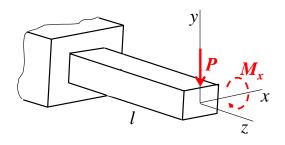
$$I_x = \int_{-\frac{h}{2}}^{\frac{h}{2}} y^2 dF$$

В сечении **z**:

$$\sigma_{\text{max}} = \frac{h}{2} \frac{P(l-z)}{I_{...}};$$

В опасном сечении (z = 0):

$$\sigma_{u \max} = \frac{h}{2} \frac{Pl}{I_x};$$



Максимальное напряжение в опасном сечении **z=0**:

$$\sigma_{u \max} = \frac{h}{2} \frac{Pl}{I_x};$$

Момент инерции поперечного сечения:

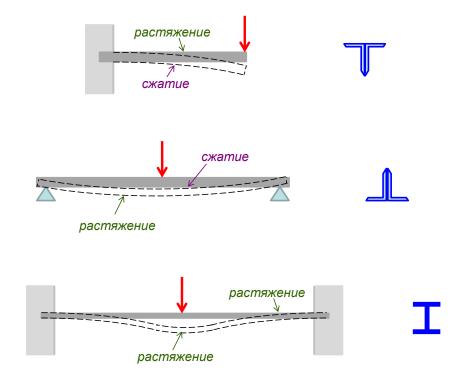
$$I_x = \int_{-\frac{h}{2}}^{\frac{h}{2}} y^2 dF$$

$$\sigma_u \rightarrow \min npu I_x \rightarrow \max(!)$$

Поскольку основные конструкционные материалы значительно хуже работают на растяжение, чем на сжатие, в рассмотренном примере изгиба консольной балки лучше всего брать её тавровый профиль. Это позволяет существенно снизить напряжение в верхней части балки за счет большого момент инерции сечения в критической его части. Налицо — оптимальный профиль балки по критерию экономии массы материала и веса конструкции.

Если балка лежит, свободно опираясь на опоры, (или шарнирно закреплена на концах), как видно на схеме ниже, тавр лучше перевернуть.

В случае, когда балка работает в одних местах на растяжение, а в других – на сжатие (например, при заделке с обоих концов, как это показано на 3-й схеме ниже), или если нагрузка знакопеременная, оптимальным будет двутавровый профиль.



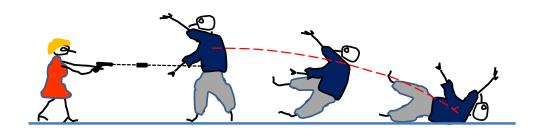
Во второй части темы фактически дано некоторое введение в важнейшую дисциплину инженерной подготовки — Сопротивление материалов. И здесь можно найти необъятное число возможных **проектных заданий** для учеников инженерных классов. Например, расчет выигрыша в допустимых нагрузках на балку в форме доски, если её ставить не плоскостью, а ребром; сравнение масс балки квадратного сечения коробчатого и сплошного профиля при одинаковой нагрузке; круглой балки сплошного и трубчатого сечения и т.п.

Тема 3. Закон сохранения импульса. Реактивная сила.

3.1. Импульс. Закон сохранения импульса

В качестве элемента мотивации слушателя можно привести такую известную «режиссёрскую находку», которая переходит из боевика в боевик, но которая явно противоречит закону сохранения импульса.

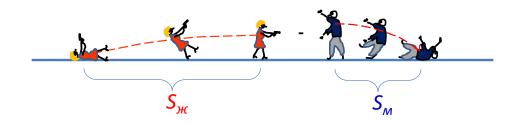
Эпизод из вестерна



Нарушен закон сохранения импульса!

Используя закон сохранения импульса легко показать, что, обладая меньшей массой, наша героиня улетит существенно дальше, чем повергнутый ею громила.

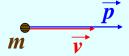
В случае, если $m_{_{\rm M}} = 2 \cdot m_{_{\rm H}}$



$$S_{\rm HC} \approx 2 \cdot S_{\rm M} !!!$$

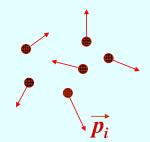
Импульс тела:

$$\vec{p} = m\vec{v}$$

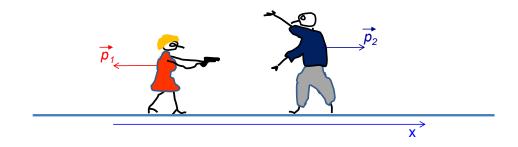


Фундаментальный закон природы - закон сохранения импульса:

$$\sum_{i} \vec{p}_{i} = \sum_{i} m_{i} \vec{v}_{i} = const$$
 для замкнутой (изолированной) системы тел



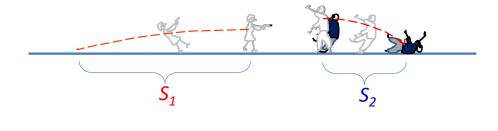
Используем закон сохранения импульса



$$0 = \vec{p}_1 + \vec{p}_2;$$
 $0 = -p_1 + p_2;$ $m_1 v_1 = m_2 v_2;$

$$m_1 \frac{S_1}{t} = m_2 \frac{S_2}{t};$$
 $\frac{S_1}{S_2} = \frac{m_2}{m_1}$

Если
$$m_2 = 2 \cdot m_1$$



 $S_1 \approx 2 \cdot S_2$

Знак «≈» связан с тем, что при решении не учтёна масса пули, а также разница во времени падения героини и громилы.

В качестве маленьких **исследований** учащимся можно предложить, например, определения времени «полёта» героев, а также оценку массы «пульки», необходимой для подобного эффекта.

3.2. Реактивное движение. Уравнение Мещерского

Движение ракеты под действием реактивной силы

$$\overrightarrow{u} + \overrightarrow{v}$$
 – скорость газов относительно ИСО

Через малый интервал времени Δt масса ракеты M уменьшится на величину $\mu \Delta t$, где μ — расход топлива (масса истекающих газов в единицу времени).

За это же время скорость ракеты возрастет на величину Δv .

Тогда по закону сохранения импульса:

$$M\vec{v} = (M - \mu \Delta t)(\vec{v} + \Delta \vec{v}) + \mu \Delta t(\vec{u} + \vec{v}).$$

скорость истечения газов относительно ракеты

$$M\vec{v} = (M - \mu \Delta t)(\vec{v} + \Delta \vec{v}) + \mu \Delta t(\vec{u} + \vec{v}).$$

$$M\vec{v} = M\vec{v} - \mu \Delta t \vec{v} + M \Delta \vec{v} - \mu \Delta t \vec{v} + \mu \Delta t \vec{u} + \mu \Delta t \vec{v}.$$

(величина второго порядка малости)

Откуда
$$M\Delta \vec{v} = -\mu \Delta t \vec{u}$$
, или

$$M\,rac{\Delta ec{v}}{\Delta t} = -\mu ec{u}$$
 — формула Мещерского

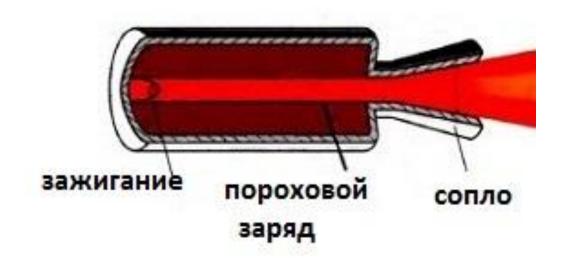
$$rac{\Delta ec{v}}{\Delta t}$$
 – ускорение ракеты $ec{F}_p = -\mu ec{u}$ – реактивная сила

3.3. Реактивные двигатели

Ракетные двигатели

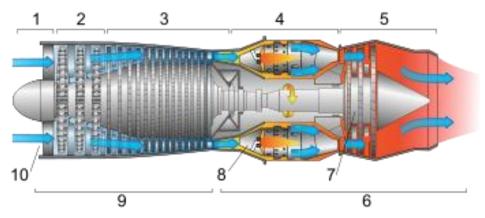
1. Жидкостно-реактивные двигатели (ЖРД)

2. Твердотопливный (пороховой) двигатель



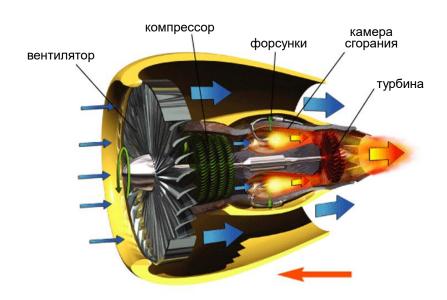
Воздушно-реактивные двигатели

1. Турбореактивный двигатель (ТРД)



- 1. Забор воздуха
- 2. Компрессор низкого давления
- 3. Компрессор высокого давления
- 4. Камера сгорания
- 5. Расширение рабочего тела в турбине и сопле
- 6. Горячая зона
- 7. Турбина
- 8. Зона входа первичного воздуха в камеру сгорания
- 9. Холодная зона
- 10. Входное устройство

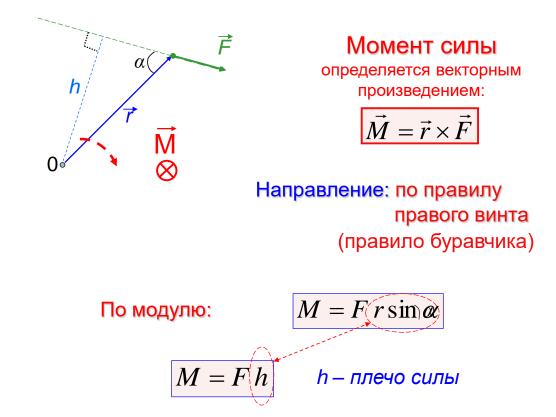
2. Турбоветиляторный двигатель



В качестве исследований здесь можно, в первую очередь, рекомендовать реферативную работу по устройству и параметрам всякого рода реактивных двигателей в зависимости от цели; назначение и устройство отдельных агрегатов двигателей (например, всех пяти указанных на последнем рисунке агрегатов турбовентиляторного двигателя).

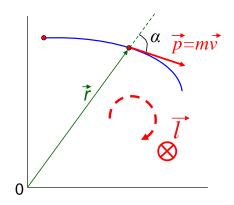
Тема 4. Вращательное движение твердых тел. Гироскоп. Гироскопические устройства

4.1. Момент силы. Момент импульса. Момент инерции



Следует заметить, что последующий материал не является обязательным в общеобразовательной средней школе. Однако он весьма важен и полезен при углублённом изучении физики. Без него достаточно сложно объяснять некоторые физические процессы и явления, особенно из области современных достижений науки. Поэтому рекомендуем изучить данный раздел, тем более, что для этого не потребуется математика более высокого уровня по сравнению с применявшейся до сих пор.

Момент импульса частицы

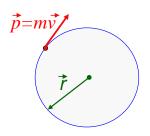


$$\vec{l} = \vec{r} \times \vec{p}$$

Направление – по правилу правого винта.

По модулю: $l = r p \sin \alpha = m v r \sin \alpha$

Момент импульса МТ при движении по окружности:



$$l = mvr \sin 90^0 = mvr$$

Ho
$$v=\omega r$$
,

$$m.e.$$
 $l = mr^2 \omega$

$$I = mr^2$$
 - MON

- **момент инерции** материальной точки

$$l = I \omega$$
 Для сравнения: $p = m v$

4.2. Изменение момента импульса. Закон сохранения момента импульса

$$\frac{d\vec{l}}{dt} = \frac{d}{dt}(\vec{r} \times \vec{p}) = \frac{d\vec{r}}{dt} \times \vec{p} + \vec{r} \times \frac{d\vec{p}}{dt} = \vec{v} \times \vec{m}\vec{v} + \vec{r} \times \vec{F}$$

$$\frac{d\vec{l}}{dt} = \vec{M}$$

Условие сохранения момента импульса частицы

$$l = const$$
, если $M = 0$ $\vec{M} = \vec{r} \times \vec{F}$

- $1) F = 0 \ (свободная частица)$
- 2) Вектора \vec{r} и \vec{F} сонаправлены (сила центральная)

Момент импульса системы МТ

$$\vec{L} = \sum_{i=1}^{N} \vec{l}_i = \sum_{i} \vec{r}_i \times \vec{p}_i$$

в замкнутой системе - сохраняется (фундаментальный закон природы):

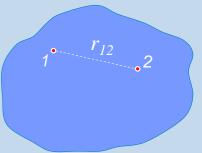
$$\sum_{i} \vec{l}_{i} = const$$

4.3. Абсолютно твердое тело (ATT). Момент импульса ATT относительно неподвижной оси. Момент инерции ATT

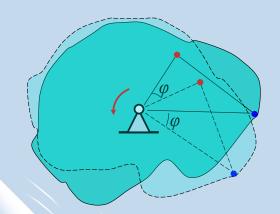
Абсолютно твердым телом (АТТ) называется тело, деформациями которого в условиях данной задачи можно пренебречь.

В АТТ расстояние между любой парой точек не меняется.

$$r_{12} = const$$
.....
 $r_{ik} = const$



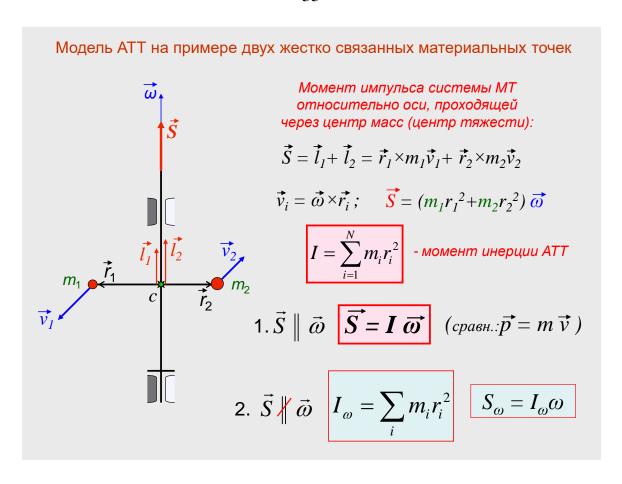
Все точки АТТ при вращении имеют одинаковую угловую скорость.



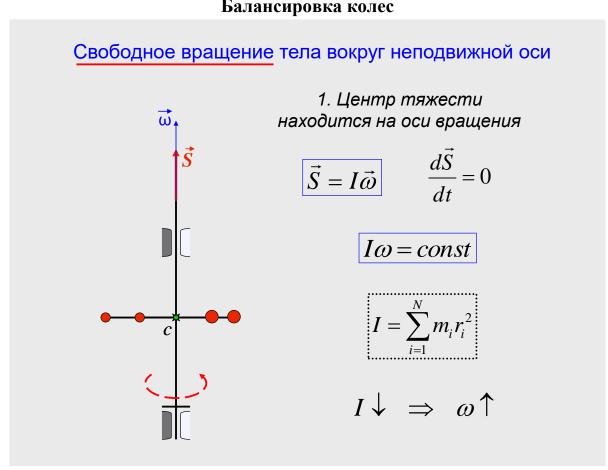
$$\varphi_1 = \varphi_2 = \dots = \varphi$$

$$\omega = \frac{d\varphi}{dt}$$

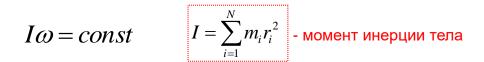
$$\omega_1 = \omega_2 = \dots = \omega$$

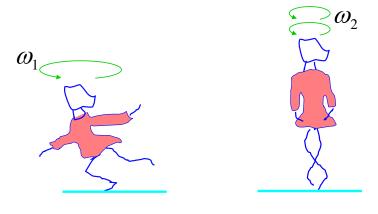


4.4. Свободное вращение ATT относительно неподвижной оси. Балансировка колес



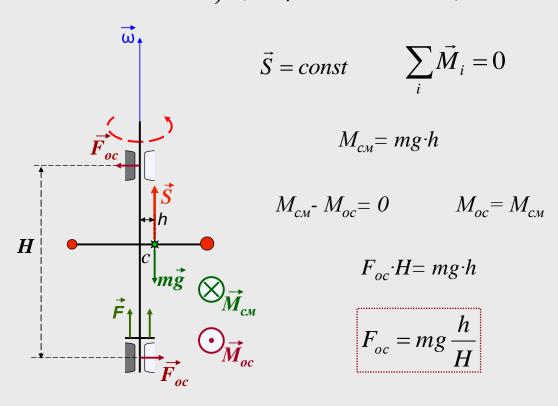
Сохранение момента импульса свободного тела



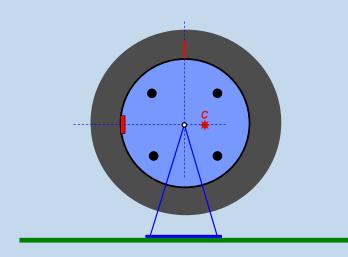


$$I_1\omega_1 = I_2\omega_2$$

$$I_1 \omega_1 = I_2 \omega_2$$
 $I_2 < I_1; \quad \omega_2 > \omega_1$

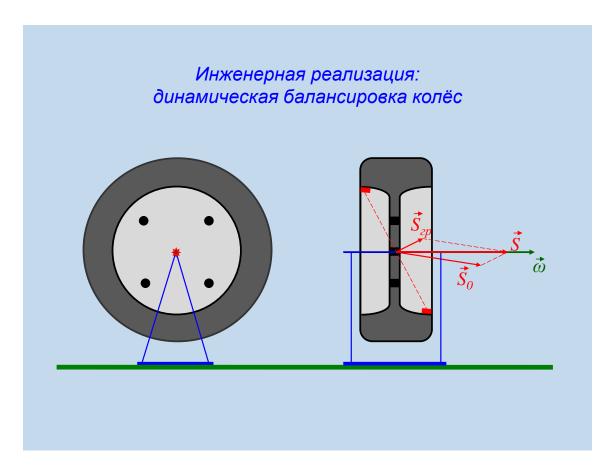


Инженерная реализация: статическая балансировка колёс

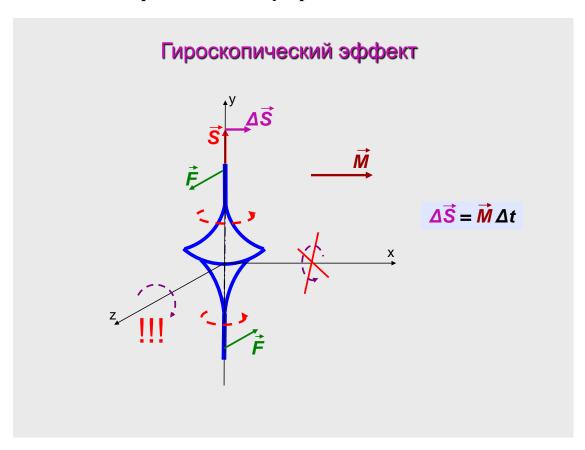


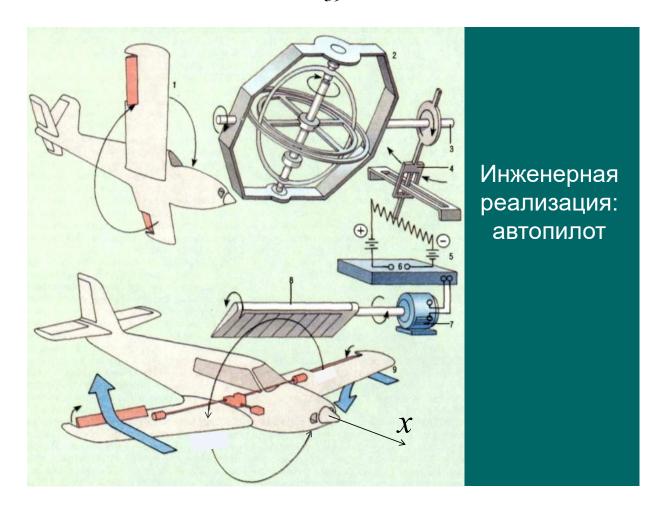
3. Направления \mathbf{S} и $\mathbf{\omega}$ не совпадают





4.5. Гироскоп. Гироскопический эффект. Гироскопические устройства. Автопилот



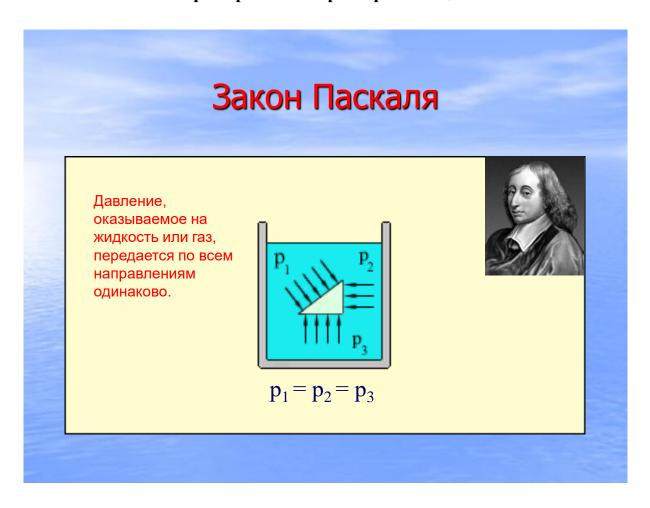


На рисунке представлен один из элементов автоматического управления самолетом (автопилота) — управление углом крена. Принцип его действия следующий. Пусть каким-то случайным образом (например, в зоне турбулентности) появился крен самолёта влево (1), т.е. на гироскоп (2) начинает действовать вращающий момент вокруг оси x. Тогда, благодаря гироскопическому эффекту, гироскоп начинает поворачиваться вокруг горизонтальной оси (3), перемещая с помощью рычага (4) движок реостата (5). В электрической схеме управления на контактах (6) возникает напряжение, включающее двигатель управления элеронами, поворот которых создаёт обратный вращающий момент на крыльях самолёта, возвращая его в первоначальное состояние.

Темы исследований здесь, в первую очередь, должны быть связаны с изучением применяемых в данных устройствах систем ориентации и равновесия человека в таких, казалось бы, неустойчивых средствах передвижения, а также систем управления движением этих устройств.

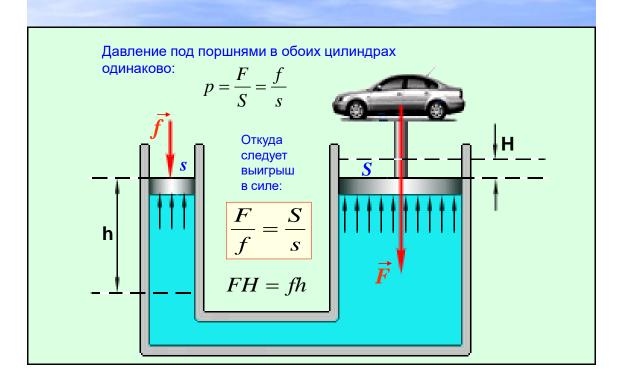
Тема 5. Гидростатика. Гидродинамика. Уравнение неразрывности. Уравнение Бернулли. Подъемная сила

5.1. Основные законы и уравнения гидростатики. Закон Паскаля. Закон Архимеда. Примеры инженерной реализации



Ниже представлен один из примеров инженерной реализации закона Паскаля – гидравлический подъёмник. Здесь – богатейшие возможности для формирования тематики **исследовательских проектов**: гидравлические и пневматические системы управления, усилители, тормозные устройства и т.д.

Гидравлическая машина



Архимедова сила

Давление жидкости на верхнюю и нижнюю поверхности погружённого в жидкость тела равно, соответственно:

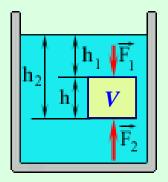
$$p_1 = \rho g h_1$$
; $p_2 = \rho g h_2$.

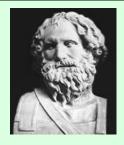
Поскольку глубина $h_2\!>h_1$,

то
$$p_2 > p_1$$
.

Разность сил составляет выталкивающую силу – силу Архимеда:

$$F_2 - F_1 = F_A$$

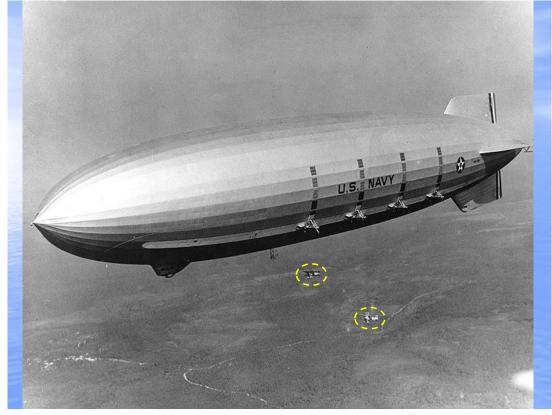




$$F_A = \rho_{\mathcal{H}} V g$$

$$F_A = S(p_2 - p_1) = S\rho g(h_2 - h_1) = \rho Shg = \rho Vg$$

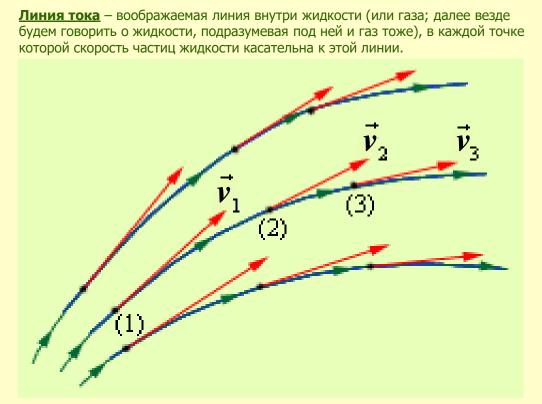
Далее представлены летательные аппараты, принцип действия которых основан на законе Архимеда.



Дирижабль. Чтобы оценить его размеры, обратите внимание на отмеченные внизу самолёты, сопровождающие дирижабль.

5.2. Модель сплошной среды. Уравнение неразрывности

Введём основные определения и параметры, соответствующие модели сплошной среды.



Уравнение неразрывности

Рассмотрим течение жидкости внутри трубки тока разного сечения. Можно предположить, что и скорости жидкости в этих сечениях будут различными.



а поскольку масса равна произведению плотности на объём, то: $ho_1\,dV_1=
ho_2\,dV_2$. Каждый из объёмов определяется произведением площади на длину, равную скорости жидкости в этом месте на время dt : $dV=S\cdot v\;dt$;

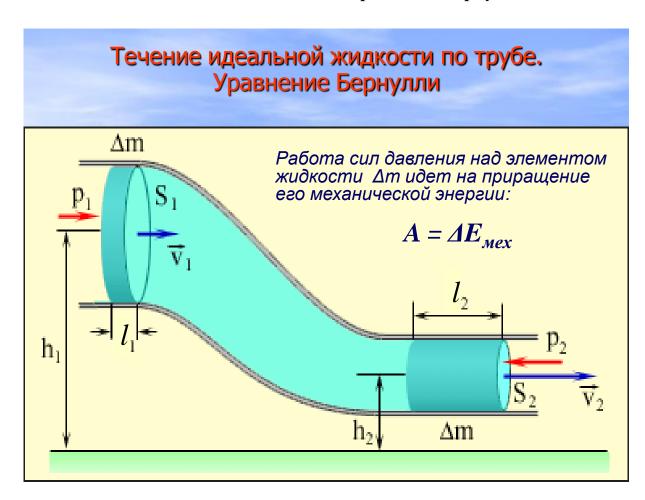
T.e.
$$\rho_1 S_1 v_1 dt = \rho_2 S_2 v_2 dt$$
.

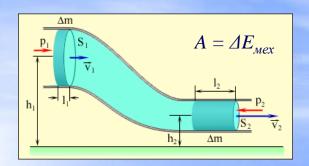
$$\rho \ v \ S = const$$

- уравнение неразрывности

Для несжимаемой жидкости (ρ =const): v S = const

5.3. Идеальная жидкость. Уравнение Бернулли





Работа над жидкостью определяется силами давления слева и справа рассматриваемого участка. При этом работа справа отрицательна поскольку давление р2 направлено в сторону, противоположную перемещению:

$$A = p_1 S_1 l_1 - p_2 S_2 l_2.$$

А поскольку произведение площади сечения трубы на перемещение жидкости через соответствующее сечение равно величине протекшего объёма, то:

$$A = p_1 \frac{\Delta m}{\rho_1} - p_2 \frac{\Delta m}{\rho_2},$$

где ho - плотность жидкости.

С другой стороны, изменение механической энергии жидкости на входе и выходе равно:

$$\Delta E_{\text{mex}} = \frac{\Delta m \cdot v_2^2}{2} + \Delta m \cdot g h_2 - (\frac{\Delta m \cdot v_1^2}{2} + \Delta m \cdot g h_1)$$

$$A = \Delta E_{mex}$$

$$A = p_1 \frac{\Delta m}{\rho_1} - p_2 \frac{\Delta m}{\rho_2},$$

$$\Delta E_{\text{Mex}} = \frac{\Delta m \cdot v_2^2}{2} + \Delta m \cdot g h_2 - (\frac{\Delta m \cdot v_1^2}{2} + \Delta m \cdot g h_1)$$

Подставляя выражения для работы и изменения энергии в первое равенство, при этом сократив всё на величину **Д***m*, получим:

$$\frac{v_2^2}{2} + gh_2 + \frac{p_2}{\rho_2} = \frac{v_1^2}{2} + gh_1 + \frac{p_1}{\rho_1}$$

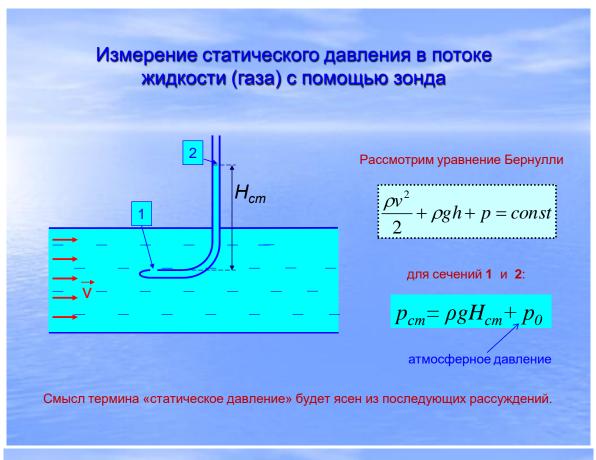
Таким образом:

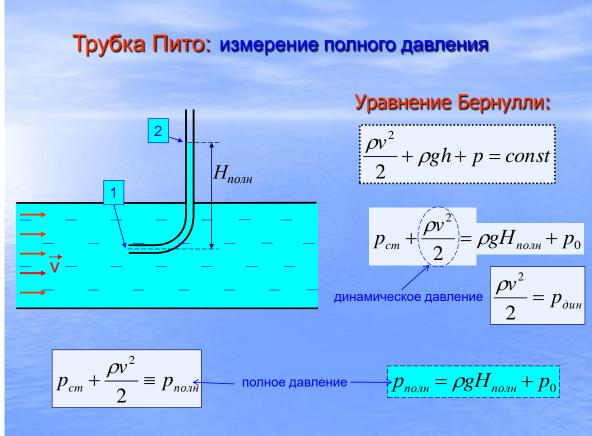
$$\frac{v^2}{2} + gh + \frac{p}{\rho} = const$$
 - уравнение Бернулли

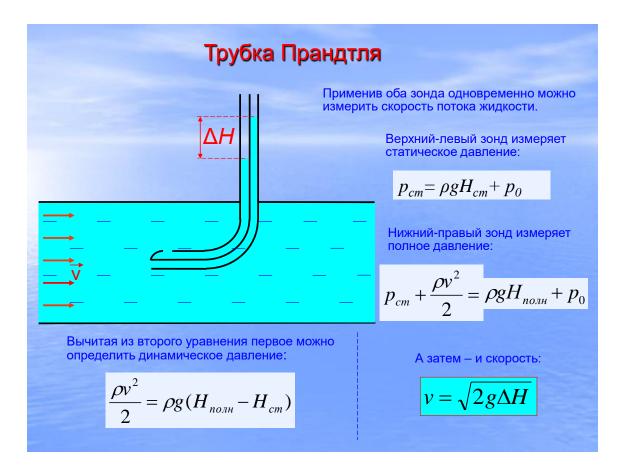
Для несжимаемой жидкости ($\rho = const$):

$$\frac{\rho v^2}{2} + \rho g h + p = const$$

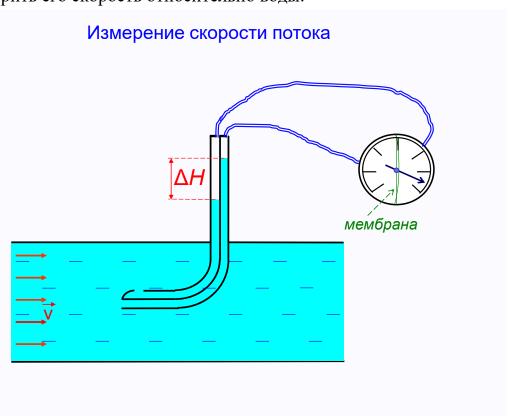
5.4. Измерение статического и динамического давления. Трубка Пито. Трубка Прандтля







Если теперь трубку Прандтля выставить в воду за борт корабля, можно измерить его скорость относительно воды.



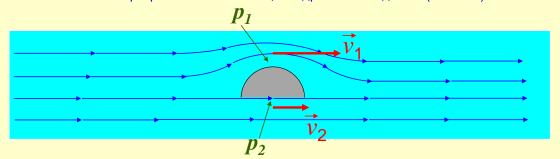
TO

Точно так же измеряется скорость летательного аппарата относительно воздуха, в котором он летит. В этом случае, естественно, используют либо стрелочные приборы, либо выводят информацию на дисплей. Тематика исследовательского проектирования здесь может касаться устройства мембранного механизма привода стрелки прибора, его тарировки и т.д.

5.5. Подъемная сила крыла. Профиль Жуковского

Возникновение подъемной силы при обтекании асимметричного тела

Поместим разрезанный пополам цилиндр в поток жидкости (или газа).



Вследствие асимметричности тела верхние линии тока получаются длиннее нижних, а из-за неразрывности жидкости её частицы должны преодолевать эти расстояния за одно и то же время. Т.е. скорость течения жидкости над верхней поверхностью тела в этом случае будет выше, чем под нижней:

$$v_1 > v_2$$
.

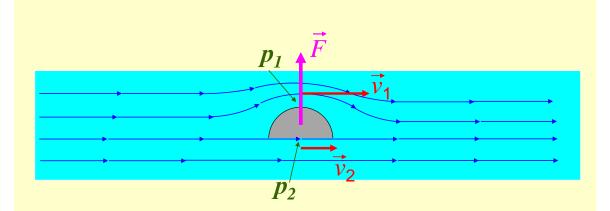
Тогда из уравнения Бернулли:

$$\frac{\rho v^2}{2} + p = const$$

следует, что давление в верхней части ниже, чем в нижней:

$$p_1 < p_2$$
;

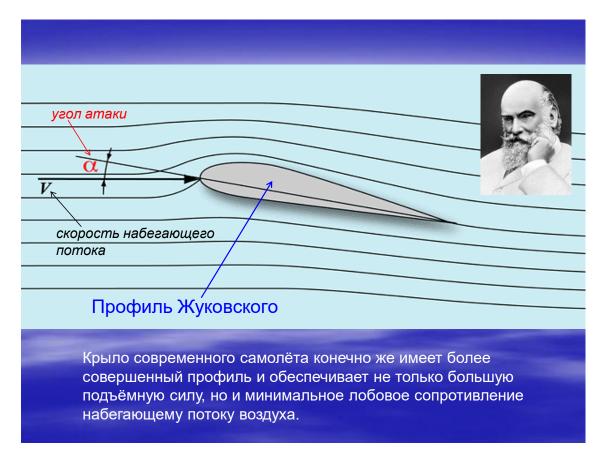
(разностью высот положения этих поверхностей пренебрегаем по сравнению, например, с расстоянием до земли).

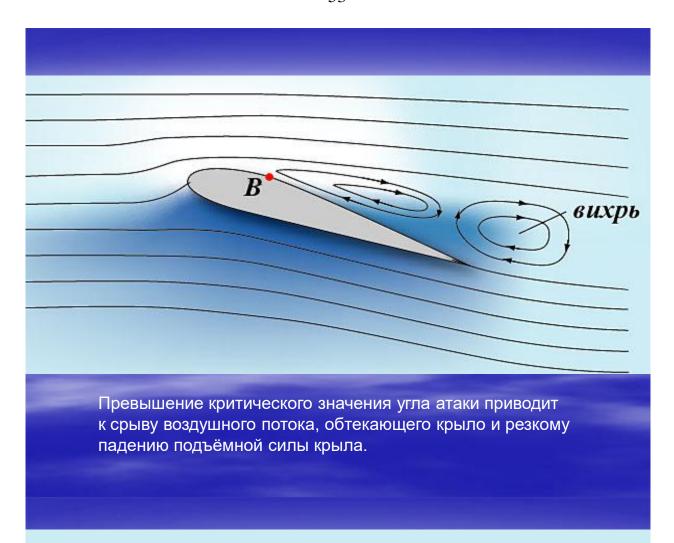


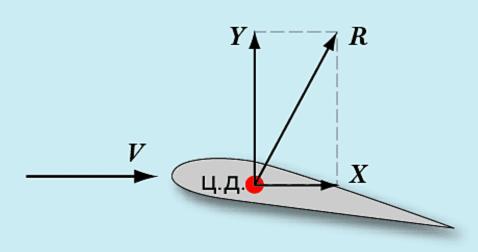
$$v_1 > v_2$$
, $p_1 < p_2$.

Разность давлений создает подъёмную силу: ${\it F} = < p_2 - p_1 > \cdot {\it S}$,

где $< p_1 - p_2 > -$ средняя по всей площади «крыла» разность давлений, S – площадь «крыла» в плане, т.е. при виде сверху. Крыло современного самолета, конечно же, имеет более совершенный профиль и обеспечивает не только бо'льшую подъёмную силу, но и минимальное лобовое сопротивление потоку воздуха.





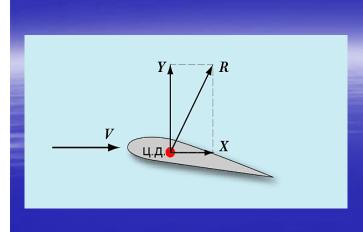


X – сила лобового сопротивления крыла;

Y – подъёмная сила;

 $m{R}$ — равнодействующая этих сил;

Ц.Д. (центр давления) – точка приложения равнодействующей всех сил, действующих на тело в потоке жидкости или газа.



Принято обозначать:

$$Y = C_{y} \frac{\rho v^{2}}{2} S$$

$$X = C_x \frac{\rho v^2}{2} S$$

 $\frac{\rho v^{2}}{2} - \partial u$ намический напор (динамическое двление);

S – площадь крыла в плане;

 C_{v} – коэффициент подъемной силы крыла;

 C_{x} – коэффициент лобового сопротивления.

Литература

- 1. Физика: Механика. Учебник для углубленного изучения физики под ред. Мякишева. 10 кл. М.: Дрофа, 2008.
- 2. Касьянов В.А. Физика. 10 класс. Учебник для общеобразовательных учреждений. М.: Дрофа, 2008.

ПРИЛОЖЕНИЕ

ИНСТРУКЦИЯ

по навигации при показе слайдов

Поскольку презентация открываются сразу в режиме показа слайдов, то для перехода к следующему слайду, а также к следующему шагу анимации внутри данного слайда необходимо нажать на любую из клавиш: **N, Enter, Page Down**, пробел, со стрелкой «вправо», стрелкой «вниз» (или щелкнуть мышью).

Для показа клипа лекционной демонстрации внутри презентации необходимо щелкнуть мышью по заглавному кадру. По окончании клипа для перехода к следующему слайду необходимо щелкнуть мышью к область слайда вне кадра клипа.

Возврат к предыдущему слайду или предыдущей анимации производится нажатием одной из клавиш: **P, Page Up**, со стрелкой «вверх» или со стрелкой «влево».

Завершение показа слайдов: клавиша **Esc**.

Примечание: 1. При перемещении мыши во время показа в левом нижнем углу слайда появляются значки навигации, позволяющие сделать шаг вперёд или шаг назад, вызвать контекстное меню или инструмент **Стрелка**.

- 2. Вызвав контекстное меню, можно перейти к любому слайду презентации.
- 3. Нажатие на клавишу F1 во время показа слайдов открывает список всех команд навигации.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ
Тема 1 . Инерциальные системы отсчета. Преобразования Галилея.
Закон сложения скоростей
1.1. Основные определения
1.2. Преобразования Галилея и следствия из них
1.3. Примеры инженерной реализации.
Темы исследовательских проектов
Тема 2. Силы в природе. Упругая сила. Деформация тел.
Закон Гука. Силы трения. Движение в вязкой среде 19
2.1. Фундаментальные и нефундаментальные взаимодействия.
Классификация фундаментальных взаимодействий
2.2. Примеры нефундаментальных сил. Упругая сила. Закон Гука 20
2.3. Предельные напряжения. Предел текучести. Предел прочности 21
2.4. Запас прочности. Условие прочностной надёжности
2.5. Пример инженерного применения закона Гука
2.5. Примеры нефундаментальных сил. Силы трения
2.6. Пример решения задачи динамики.
Движение тела в вязкой среде
Тема 3 . Закон сохранения импульса. Реактивная сила
3.1. Импульс. Закон сохранения импульса
3.2. Реактивное движение. Уравнение Мещерского
3.3. Реактивные двигатели
Тема 4. Вращательное движение твердых тел. Гироскоп.
Гироскопические устройства
4.1. Момент силы. Момент импульса. Момент инерции
4.2. Изменение момента импульса.
Закон сохранения момента импульса
4.3. Абсолютно твердое тело (ATT). Момент импульса ATT
относительно неподвижной оси. Момент инерции ATT 35
4.4. Свободное вращение АТТ относительно неподвижной оси.
Балансировка колес
4.5. Гироскоп. Гироскопический эффект. Гироскопические устройства.
Автопилот
Тема 5. Гидростатика. Гидродинамика. Уравнение неразрывности.

Уравнение Бернулли. Подъемная сила	.2
5.1. Основные законы и уравнения гидростатики. Закон Паскаля.	
Закон Архимеда. Примеры инженерной реализации 4	1 2
5.2. Модель сплошной среды. Уравнение неразрывности 4	-6
5.3. Идеальная жидкость. Уравнение Бернулли 4	1 7
5.4. Измерение статического и динамического давления.	
Трубка Пито. Трубка Прандтля	49
5.5. Подъемная сила крыла. Профиль Жуковского 5	52
Литература	56
ПРИЛОЖЕНИЕ. Инструкция по навигации при показе слайдов 5	57