ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

«Атомная энергия и её применение»

Направленность: техническая

Уровень программы: базовый

Возраст обучающихся: 16-18 лет

Срок реализации: 1 год

СОДЕРЖАНИЕ

- 1. Пояснительная записка
- 2. Учебный (тематический) план
- 3. Содержание учебного (тематического) плана
- 4. Организационно-педагогические условия реализации программы

Пояснительная записка

Курс рассчитан на учащихся 10 классов и предполагает совершенствование подготовки школьников по освоению раздела школьного курса физики «Физика атома и атомного ядра».

Цель программы: развитие творческого критического мышления и компетенций в области физики атома и ядра, исследований и экспериментов.

Достижение этой цели обеспечено посредством решения следующих задач:

- развитие интереса к решению физических задач;
- совершенствование полученных в основном курсе знаний и умений;
- формирование представлений о методах обработки и анализа экспериментальной теоретической и физической информации, классификации, приемах и методах решения школьных физических задач;
 - практическое применение полученных знаний в проектной работе.

Форма и режим занятий: Программа рассчитана на один год обучения и предназначена учащимся 10 классов. Продолжительность занятий — 1 раз в неделю. Общее количество часов — 32.

Планируемые результаты:

- анализировать физическое явление;
- излагать и критически анализировать базовую общефизическую информацию;
- пользоваться основными понятиями, законами и моделями атомной и ядерной физики;
 - обрабатывать данные и интерпретировать полученный результат;
- классифицировать предложенную задачу, выбирать рациональный способ ее решения;
- решать типовые задачи и задачи повышенного уровня сложности, анализировать полученный ответ;
 - владеть методами самоконтроля и самооценки.

Формы контроля и оценочные материалы

В качестве текущего и промежуточного контроля используются

практические работы, выполненные обучающимися, контрольная работа по теме «Робототехнические системы» и итоговый проект по решению практикоориентированных задач.

Формы проведения аттестации:

- практические задания (решение задач, практическая работа);
- тестирование;
- опрос.

Первый раздел знакомит школьников с теоретическими основами физики атома и атомного ядра. Занятия проводятся в формате интерактивных лекций.

Второй раздел – решение задач.

На занятиях применяются групповые и индивидуальные формы работы. постановка, решение и обсуждение решения задач, подготовка к олимпиаде, подбор и составление задач на тему и т. д. Предполагается также выполнение домашних заданий по решению задач. В итоге школьники могут выйти на теоретический уровень решения задач: решение по определенному плану, владение основными приемами решения, осознание деятельности по решению задачи, самоконтроль и самооценка, моделирование физических явлений и т.д.

Третий раздел – проектная работа. Занятия направлены как на усвоение углубление знаний обучающимися теоретического материала, так и выработка у них навыков работы с приборами, проведения измерений, обработки данных и интерпретации полученных результатов, а также практическое освоение методов и методологии физики в рамках проектной работы.

Используются также различные методы обучения:

- словесный (рассказ, беседа, лекция);
- наглядный (показ, демонстрация);
- практический (созданием модели, готового изделия);
- исследовательский.

Механизм оценки результатов деятельности достаточно гибкий: коллективные обсуждения, конкурс творческих работ, разработка проектов и исследовательских работ.

Учебно-тематический план

$N_{\underline{0}}$	Название разделов	Количество
п/п		часов
1.	Теоретические основы атомной и ядерной физики	6
2.	Решение задач	17
3.	Проектная работа	9
	Итого	32

Содержание программы

1. Теоретические основы атомной и ядерной физики (8 ч)

Модель атома Резерфорда. Состав атомного ядра. Ядерные силы. Энергия связи ядра. Радиоактивные изотопы и их практическое использование.

Радиоактивный распад и его виды. Эффект Мессбауэра. Вынужденное излучение. Лазеры. Ускорители заряженных частиц.

Методы регистрации заряженных частиц. Дозиметрия.

Ядерная энергетика (атомные ледоколы, АЭС).

2. Решение задач (17 ч)

Общие требования при решении физических задач. Этапы решения физической задачи. Выполнение плана решения задачи. Анализ решения и его значение. Оформление решения.

Типичные недостатки при решении и оформлении решения физической задачи.

3. Проектная работа (9 ч)

Общие требования к оформлению проектных работ. Основные типы проектных работ, отличие проектной работы от исследовательской. Составление плана и дорожной карты проекта. Практическая реализация проекта.

Примерные темы проектных работ:

- 1. Создание сигнализации на АЭС (оповещение оператора, информирование оператора о функциональном нарушении в работе станции, отказ оборудования).
 - 2. Создание модели АЭС или её блоков с определенным функционалом.
- 3. Анализ требований к размещению АЭС, составление карты региона с допустимыми зонами.

Материально-технические условия реализации программы

- цифровая лаборатория по физике;
- лабораторный стенд "Определение удельного заряда электрона"
- источники питания индивидуальные;
- 3D-принтер.

Перечень оборудования может быть расширен и дополнен образовательной организацией.