ПРОЕКТ

РАБОЧАЯ ПРОГРАММА

курса внеурочной деятельности «Введение в ИТ-специальность» 10 класс 68 часов

Оглавление

1.	ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	3
2.	ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА	3
2.1.	Личностные результаты	3
2.2.	Предметные результаты	7
2.3	Метапредметные результаты	4
3.	ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ	. 13
4.	ФОРМЫ ПРОВЕДЕНИЯ ЗАНЯТИЙ	. 17
5.	ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ИСПОЛЬЗУЕМОГО ОБОРУДОВАНИЯ	. 17

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа состоит из 4 разделов. Каждый раздел рассчитан на 17 часов.

Раздел 1. Программирование микроконтроллеров

Включает в себя основы работы с микроконтроллерами, основы цифровой электроники, программирование датчиков и умного дома.

Раздел 2. Создание цифровых двойников

Включает в себя основы имитационного моделирования в среде AnyLogic.

Раздел 3. Технологии связи и информационная безопасность

Включает в себя основы работы с сетью и обеспечения безопасности при передаче информации.

Раздел 4. Введение в большие данные и искусственный интеллект

Включает в себя основы работы с большими данными и основы работы с языковыми моделями.

Планируемые результаты освоения программы «Введение в ИТ-специальность» включают личностные, метапредметные результаты за весь курс изучения программы, а также предметные достижения обучающегося по каждому разделу.

2. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА

2.1. Личностные результаты

- готовность и способность к самостоятельной, творческой и ответственной деятельности;
- навыки сотрудничества со сверстниками, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни;
- сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- эстетическое отношение к миру, включая эстетику научного и технического творчества;
- осознанный выбор будущей профессии и возможностей реализации собственных жизненных планов; отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем.

2.3. Метапредметные результаты

В результате изучения программы у обучающегося будут сформированы метапредметные результаты, отраженные в универсальных учебных действиях, а именно — познавательные универсальные учебные действия, коммуникативные универсальные учебные действия, регулятивные универсальные учебные действия, совместная деятельность.

Познавательные универсальные учебные действия Базовые логические действия:

- самостоятельно формулировать и актуализировать проблему, рассматривать её всесторонне;
- устанавливать существенный признак или основания для сравнения, классификации и обобщения;
- выявлять закономерности и противоречия в рассматриваемых явлениях;
- разрабатывать план решения проблемы с учётом анализа имеющихся материальных и нематериальных ресурсов;
- вносить коррективы в деятельность, оценивать соответствие результатов целям, оценивать риски последствий деятельности;
- координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия.

Базовые исследовательские действия:

- владеть навыками учебно-исследовательской и проектной деятельности, навыками разрешения проблем, способностью и готовностью к самостоятельному поиску методов решения практических задач, применению различных методов познания;
- осуществлять различные виды деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных ситуациях, в том числе при создании учебных и социальных проектов;
- формировать научный тип мышления, владеть научной терминологией, ключевыми понятиями и методами;
- выявлять причинно-следственные связи и актуализировать задачу, выдвигать гипотезу её решения, находить аргументы для доказательства своих утверждений, задавать параметры и критерии решения;
- анализировать полученные в ходе решения задачи результаты, критически оценивать их достоверность, прогнозировать изменение в новых условиях;
- осуществлять целенаправленный поиск переноса средств и способов действия в профессиональную среду;
- уметь интегрировать знания из разных предметных областей;
- выдвигать новые идеи, предлагать оригинальные подходы и решения, ставить проблемы и задачи, допускающие альтернативные решения.

Работа с информацией:

- владеть навыками получения информации из источников разных типов, самостоятельно осуществлять поиск, анализ, систематизацию и интерпретацию информации различных видов и форм представления;
- оценивать достоверность, легитимность информации, её соответствие правовым и морально-этическим нормам;
- использовать средства информационных и коммуникационных технологий в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;
- использовать вопросы как исследовательский инструмент познания;
- формировать запросы к информационной системе с целью получения необходимой информации;
- оценивать полноту, достоверность и актуальность полученной информации; опытным путём изучать свойства различных материалов;
- понимать различие между данными, информацией и знаниями; владеть начальными навыками работы с «большими данными»;
- владеть навыками распознавания и защиты информации, информационной безопасности личности.

Коммуникативные универсальные учебные действия Обшение:

- распознавать невербальные средства общения, понимать значение социальных знаков, распознавать предпосылки конфликтных ситуаций и смягчать конфликты;
- владеть различными способами общения и взаимодействия, аргументированно вести диалог, уметь смягчать конфликтные ситуации;
- развёрнуто и логично излагать свою точку зрения с использованием языковых средств.

Совместная деятельность:

- понимать и использовать преимущества командной и индивидуальной работы;
- принимать цели совместной деятельности, организовывать и координировать действия по их достижению: составлять план действий, распределять роли с учётом мнений участников, обсуждать результаты совместной работы;
- оценивать качество своего вклада и каждого участника команды в общий результат по разработанным критериям;
- предлагать новые проекты, оценивать идеи с позиции новизны, оригинальности, практической значимости.

Регулятивные универсальные учебные действия Самоорганизация:

- самостоятельно осуществлять познавательную деятельность, выявлять проблемы, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- самостоятельно составлять план решения проблемы с учётом имеющихся ресурсов, собственных возможностей и предпочтений;
- самостоятельно выбирать способ решения поставленной задачи, используя для этого необходимые материалы, инструменты и технологии;
- делать осознанный выбор, аргументировать его, брать ответственность за решение.

Самоконтроль:

- давать оценку новым ситуациям, вносить коррективы в деятельность, оценивать соответствие результатов целям;
- оценивать риски и своевременно принимать решения по их снижению;
- принимать мотивы и аргументы других при анализе результатов деятельности.

Принятия себя и других:

- принимать себя, понимая свои недостатки и достоинства;
- принимать мотивы и аргументы других при анализе результатов деятельности;
- признавать своё право и право других на ошибку;
- развивать способность понимать мир с позиции другого человека.

2.2. Предметные результаты

Раздел 1. Программирование микроконтроллеров

- знать базовые логические элементы (И, ИЛИ, НЕ и др.) и их таблицы истинности;
- анализировать и составлять логические схемы по заданным условиям;
- понимать принципы работы комбинационных устройств, регистров и триггеров;
- конфигурировать простые цифровые устройства на основе логических элементов;
- знать основные законы робототехники;
- интегрировать датчики в систему управления для автоматизации процессов;
- характеризовать составные части роботов, датчики в современных робототехнических системах;
- получить опыт моделирования машин и механизмов;
- владеть навыками индивидуальной и коллективной деятельности, направленной на создание робототехнического продукта;
- разрабатывать решения для умного дома;
- называть и характеризовать датчики, использованные при проектировании;
- уметь осуществлять робототехнические проекты;
- презентовать изделие;
- использовать датчики и программировать действие учебного робота в зависимости от задач проекта;
- осуществлять робототехнические проекты, совершенствовать конструкцию, испытывать и презентовать результат проекта;
- называть основные законы и принципы теории автоматического управления и регулирования, методы использования в робототехнических системах;
- реализовывать полный цикл робототехнического продукта;
- конструировать и моделировать робототехнические системы;
- приводить примеры применения роботов из различных областей материального мира;
- характеризовать возможности роботов, робототехнических систем и направления их применения;
- конструировать и моделировать робототехнические системы с использованием материальных конструкторов с компьютерным управлением и обратной связью;
- использовать визуальный язык для программирования простых робототехнических систем;
- составлять алгоритмы и программы по управлению робототехническими системами;
- самостоятельно осуществлять робототехнические проекты;

Раздел 2. Создание цифровых двойников

- знать ключевые парадигмы моделирования (дискретно-событийное (DES), агентное (ABM), системная динамика (SD));
- уметь объяснить, в каких задачах применяется каждый подход к моделированию;
- уметь создавать простые модели с использованием визуального конструктора;
- уметь строить модели процессов, агентские модели, модели системной динамики;
- уметь запускать симуляции и анализировать статистику;
- уметь ставить задачу для моделирования;
- понимать графики, отображающие результаты моделирования;
- понимать параметры моделирования и как каждый параметр влияет на результат;
- понимать, как оптимизировать систему на основе данных моделирования;
- характеризовать мир профессий, связанных с изучаемыми технологиями, их востребованность на рынке труда;

Раздел 3. Технологии связи и информационная безопасность

- понимать принципы конфиденциальности, целостности и доступности (CIA);
- знать национальные требования к защите персональных данных и принципы международной практики конфиденциальности;
- знать методы обеспечения неопровержимости участия в процессе работы с информацией (аутентификация, цифровая подпись);
- уметь анализировать журналы событий для выявления инцидентов;
- уметь использовать программный анализатор сетевых пакетов (захват, фильтр, статистика, экспорт) для поиска аномалий;
- уметь настраивать и применять централизованную систему сбора журналов безопасности с возможностью корреляции событий и формированием автоматических оповещений;
- знать актуальные киберугрозы и методы борьбы с ними;
- уметь классифицировать угрозы по векторам атак;
- уметь применять шифры, понимать их уязвимости и криптоанализ;
- Понимать симметричное и асимметричное шифрование;
- уметь настраивать защищённые сетевые соединения (VPN, SSH, TLS);
- уметь настраивать правила фильтрации трафика;
- уметь тестировать и защищать веб-приложения;
- уметь проводить контрольную проверку безопасности веб-ресурса, составляя отчёт-таблицу уязвимостей;
- уметь выявлять угрозы на основе логов;

Раздел 4. Основы технологий искусственного интеллекта

- уметь обрабатывать, анализировать, интерпретировать и визуализировать данные в Python;
- уметь характеризовать большие данные, приводить примеры источников их получения и направления использования;
- уметь классифицировать основные задачи анализа данных: прогнозирование, классификация, кластеризация, анализ отклонений;
- знать последовательность решения задач анализа данных: сбор первичных данных, очистка и оценка качества данных, выбор и/или построение модели;
- владеть навыками сбора первичных данных, в том числе из интернета с помощью парсинга;
- уметь работать с базами данных и большими массивами информации;
- уметь вычислять, интерпретировать и визуализировать среднее значение, дисперсию, стандартное отклонение;
- знать и применять на практике структуры данных: кортежи, списки, множества, словари;
- понимать основы работы с файлами в Python;
- знать и понимать парадигму MapReduce;
- уметь работать с базами данных и большими массивами информации;
- понимать основы работы с базами данных (SQL) и XML;
- понимать основные алгоритмы машинного обучения и их применения;
- уметь применять линейную и логистическую регрессию, деревья решений, кластеризацию;
- знать основы нейросетевых технологий и современных трендов в ИИ, включая глубокое обучение;

3. СОДЕРЖАНИЕ ЭЛЕКТИВНОГО КУРСА

Раздел 1. Программирование микроконтроллеров (17 часов)

Глава 1. Основы цифровой электроники

- 1.1. Базовые логические элементы. Логические функции и таблицы истинности
- 1.2. Восстановление логических схем по таблицам истинности
- 1.3. Комбинационные устройства, регистры и триггеры
- 1.4. Конфигурирование устройств

Глава 2. Работа с исполнительными элементами

- 2.1. Управление индикаторами
- 2.2. Управление сервоприводами
- 2.3. Управление двигателями постоянного тока
- 2.4. Оптимизация программного управления исполнительными устройствами

Глава 3. Работа с датчиками

- 3.1. Аналоговые датчики
- 3.2. Цифровые датчики
- 3.3. Программная обработка данных, полученных с датчиков

Глава 4. Конфигурирование устройств на базе микроконтроллеров

- 4.1. Система регулирования движения на перекрёстке
- 4.2. Манипулятор
- 4.3. Автономное транспортное средство
- 4.4. Решение для умного дома
- 4.5. Цифровая лаборатория для урока физики
- 4.6. Шифраторы и дешифраторы

Раздел 2. Создание цифровых двойников (17 часов)

Глава 1. Введение в имитационное моделирование

- 1.1. Понятие имитационного моделирования и его применение
- 1.2. Основные библиотеки, функции и методы
- 1.3. Основные этапы построения модели
- 1.4. Типы имитационного моделирования

Глава 2. Создание простых имитационных моделей в среде AnyLogic

- 2.1. Введение в AnyLogic. Основы создания простых моделей
- 2.2. Исследование и применение главного инструмента визуализации модели: агент
- 2.3. Состояния агента
- 2.4. Параметры и переменные
- 2.5. Прототипы

- 2.6. Пешеходная библиотека
- 2.7. Решение задач агентского моделирования
- 2.8. Моделирование объектов, процессов с применением статистических элементов для сбора данных о поведении агента
- 2.9. Анализ смоделированной информации

Глава 3. Имитационное моделирование при создании агентных, системнодинамических и дискретно-событийных моделей в среде AnyLogic

- 3.1. Агентное моделирование
- 3.2. Дискретно-событийное моделирование
- 3.3. Системная динамика

Раздел 3. Технологии связи и информационная безопасность (17 часов)

Глава 1. Основы информационной безопасности и криптография

- 1.1. Триада информационной безопасности
- 1.2. Неопровержимость и аудит журналов
- 1.3. Управление рисками
- 1.4. Обзор современных угроз
- 1.5. Социальная инженерия: фишинг, претекстинг, бейтинг
- 1.6. Классические шифры: Скифала, Цезарь, Атбаш
- 1.7. Классические шифры: Полибий, Гронсфельд, Виженер
- 1.8. Практическая криптография и онлайн-инструменты
- 1.9. Продвинутые криптосистемы: RSA, DH, хеш-функци

Глава 2. Сетевая безопасность

- 2.1. Анализ сетевого трафика
- 2.2. Настройка частных сетей
- 2.3. Межсетевые экраны: UFW и iptables-nft
- 2.4. Веб-уязвимости: SQLi, XSS
- 2.5. Журналирование и SIEM-анализ
- 2.6. Криптоанализ и расследование кибер-преступлений
- 2.7. Сканирование web-уязвимостей
- 2.8. Практика «Захват флага»

Раздел 4. Введение в большие данные и искусственный интеллект (17 часов)

Глава 1. Обработка данных с помощью языка программирования Python и большие данные

- 1.1. Структуры данных в Python: список, множество, словарь, кортеж
- 1.2. Визуализация данных в Python: графики функций, гистограммы
- 1.3. Введение в статистическую обработку данных. Вычисление среднего значения, дисперсии, стандартного отклонения. Правило трёх сигм

- 1.4. Хранение данных: использование файлов
- 1.5. Хранение данных: введение в SQL
- 1.6. Хранение данных: введение в ХМС
- 1.7. Получение больших данных из Интернета: парсинг сайтов в Python
- 1.8. Большие текстовые данные
- 1.9. Введение в большие данные: парадигма MapReduce и Hadoop

Глава 2. Введение в искусственный интеллект и машинное обучение

- 2.1. На что способен ИИ: обзор современных приложений
- 2.2. Линейная регрессия
- 2.3. Логистическая регрессия
- 2.4. Деревья решений
- 2.5. Кластеризация и алгоритм K-means
- 2.6. Рекомендательные системы
- 2.7. Введение в нейронные сети
- 2.8. Глубокое обучение и современные ИИ-модели

3. ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

Раздел 1. Программирование микроконтроллеров

№п/п	Тема	Количество часов
1	Базовые логические элементы. Логические функции и таблицы истинности	1
2	Восстановление логических схем по таблицам истинности	1
3	Комбинационные устройства, регистры и триггеры	1
4	Конфигурирование устройств	1
5	Управление индикаторами	1
6	Управление сервоприводами	1
7	Управление двигателями постоянного тока	1
8	Оптимизация программного управления исполнительными устройствами	1
9	Аналоговые датчики	1
10	Цифровые датчики	1
11	Программная обработка данных, полученных с датчиков	1
12	Система регулирования движения на перекрёстке	1
13	Манипулятор	1
14	Решение для умного дома	1
15	Автономное транспортное средство	1
16	Цифровая лаборатория для урока физики	1
17	Шифраторы и дешифраторы	1

Раздел 2. Создание цифровых двойников

№п/п	Тема	Количество часов
1	Понятие имитационного моделирования и его применение	1
2	Основные библиотеки, функции и методы	1
3	Основные этапы построения модели	1
4	Типы имитационного моделирования	1
5	Введение в AnyLogic. Основы создания простых моделей	1
6	Исследование и применение главного инструмента визуализации модели: агент	1
7	Состояния агента	1
8	Параметры и переменные	1
9	Прототипы	1
10	Пешеходная библиотека	1
11	Решение задач агентского моделирования	2
12	Моделирование объектов, процессов с применением статистических элементов для сбора данных о поведении агента	1
13	Анализ смоделированной информации	1
14	Агентное моделирование	1
15	Дискретно-событийное моделирование	1
16	Системная динамика	1

Раздел 3. Технологии связи и информационная безопасность

№п/п	Тема	Количество часов
1	Триада информационной безопасности	1
2	Неопровержимость и аудит журналов	1
3	Управление рисками	1
4	Обзор современных угроз	1
5	Социальная инженерия: фишинг, претекстинг, бейтинг	1
6	Классические шифры: Скифала, Цезарь, Атбаш	1
7	Классические шифры: Полибий, Гронсфельд, Виженер	1
8	Практическая криптография и онлайн-инструменты	1
9	Продвинутые криптосистемы: RSA, DH, хеш-функци	1
10	Анализ сетевого трафика	1
11	Настройка частных сетей	1
12	Межсетевые экраны: UFW и iptables-nft	1
13	Веб-уязвимости: SQLi, XSS	1
14	Журналирование и SIEM-анализ	1
15	Криптоанализ и расследование кибер-преступлений	1
16	Сканирование web-уязвимостей	1
17	Практика «Захват флага»	1

Раздел 4. Введение в большие данные и искусственный интеллект

№п/п	Тема	Количество часов
1	Структуры данных в Python: список, множество, словарь, кортеж	1
2	Визуализация данных в Python: графики функций, гистограммы	1
3	Введение в статистическую обработку данных. Вычисление среднего значения, дисперсии, стандартного отклонения. Правило трёх сигм	1
4	Хранение данных: использование файлов	1
5	Хранение данных: введение в SQL	1
6	Хранение данных: введение в XML	1
7	Получение больших данных из Интернета: парсинг сайтов в Python	1
8	Большие текстовые данные	1
9	Введение в большие данные: парадигма MapReduce и Hadoop	1
10	На что способен ИИ: обзор современных приложений	1
11	Линейная регрессия	1
12	Логистическая регрессия	1
13	Деревья решений	1
14	Кластеризация и алгоритм K-means	1
15	Рекомендательные системы	1
16	Введение в нейронные сети	1
17	Глубокое обучение и современные ИИ-модели	1

4. ФОРМЫ ПРОВЕДЕНИЯ ЗАНЯТИЙ

Лекция, семинар, практикум, практическая работа.

5. ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ИСПОЛЬЗУЕМОГО ОБОРУДОВАНИЯ

- Образовательный набор «Амперка» (Iskra Uno);
- образовательный набор «Введение в Интернет вещей»;
- образовательный набор по электронике, электромеханике и микропроцессорной технике;
- базовый набор многокомпонентных робототехнических систем и манипуляционных роботов;
- образовательный набор по электронике, электромеханике и микропроцессорной технике. Конструктор программируемых моделей инженерных систем;
- набор образовательный для пошагового ознакомления с работой на языке С++ и сборки робототехнической модели;

Перечень оборудования может быть расширен и дополнен образовательной организацией.